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Abstract 

Metabolism is a fundamental process in ecosystems that crosses multiple scales of organization from individual 
organisms to whole ecosystems. To improve sharing and reuse of published metabolism models, we developed LakeM-
etabolizer, an R package for estimating lake metabolism from in situ time series of dissolved oxygen, water temperature, 
and, optionally, additional environmental variables. LakeMetabolizer implements 5 different metabolism models with 
diverse statistical underpinnings: bookkeeping, ordinary least squares, maximum likelihood, Kalman filter, and 
Bayesian. Each of these 5 metabolism models can be combined with 1 of 7 models for computing the coefficient of gas 
exchange across the air–water interface (k). LakeMetabolizer also features a variety of supporting functions that 
compute conversions and implement calculations commonly applied to raw data prior to estimating metabolism (e.g., 
oxygen saturation and optical conversion models). These tools have been organized into an R package that contains 
example data, example use-cases, and function documentation. The release package version is available on the Com-
prehensive R Archive Network (CRAN), and the full open-source GPL-licensed code is freely available for 
examination and extension online. With this unified, open-source, and freely available package, we hope to improve 
access and facilitate the application of metabolism in studies and management of lentic ecosystems. 
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Introduction

Metabolism is a fundamental ecological process that occurs 
at scales ranging from individual organisms to whole 
ecosystems (Brown et al. 2004). Whole-ecosystem 
metabolism cannot be measured directly, but rather 
represents the balance between carbon fixation (gross 
primary production [GPP]) and biological carbon oxidation 
(ecosystem respiration [R]) in an ecosystem. The difference 
between GPP and R is termed net ecosystem production 
(NEP) and is used to delineate heterotrophic systems 

(negative NEP) from autotrophic systems (positive NEP). 
At an ecosystem scale, metabolism estimates provide 
insight into the dynamics of food webs through primary 
productivity (e.g., Carpenter et al. 1987), energy mobiliza-
tion ratios (Jansson et al. 2003, Ask et al. 2009), rates of 
carbon accumulation or loss in an ecosystem (Lovett et al. 
2006), global carbon budgets (Field et al. 1998, Cole et al. 
2007), and anticipated changes in ecosystem state (Yvon-
Durocher et al. 2012, Batt et al. 2013). 

Lake metabolism is frequently estimated from 
free-water dissolved oxygen (DO) concentrations (e.g., 
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Staehr et al. 2010). In surface waters, the day–night 
dynamics of DO are indicative of lake GPP and R, after 
accounting for abiotic losses and gains in the water 
column. The free-water method was made popular by 
Odum (1956) and has recently become prominent with 
the advancement of automated sensor technology (Cole 
et al. 2000, Hanson 2007). Estimating metabolism based 
on high-frequency DO sensor measurements simplifies 
data collection, especially at times when manual 
sampling would be difficult (e.g., during storms, under 
ice), and it can provide high temporal and spatial 
resolution (inter- and intra-lake), which allows novel 
questions regarding whole-lake metabolism (Coloso et 
al. 2008, Staehr et al. 2012b, Van de Bogert et al. 2012, 
Solomon et al. 2013). 

The value of quantifying lake metabolism and the 
availability of necessary data has led to a rapid prolifera-
tion of computational methodologies for estimating 
metabolism (Staehr et al. 2010, Hoellein et al. 2013). 
Although technological advances in automated sensors 
and the expansion of cross-site collaborations have 
increased the accessibility of high-frequency DO time 
series (Porter et al. 2012, Read et al. 2012, Solomon et al. 
2013), barriers are presented by the statistics, 
programming, and multitude of equations used to convert 
sensor observations into estimates of lake metabolism. 
These analytical barriers may be overcome by 
documented, functional computer code designed to 
estimate lake metabolism from commonly collected 
sensor data. Making the code free and open source will 
promote inclusion of metabolism estimates into research 
studies, foster sensor data standardization, and evolve as 
scientific methodologies advance. In this manuscript, we 
introduce a new R package called LakeMetabolizer, 
developed to streamline established approaches to 
estimating lake metabolism. 

Methods

We present approaches to estimating lake metabolism 
that attribute changes in DO to biological processes 
(metabolism) and to physical exchange of oxygen (O2) 
across the air–water interface. Metabolism models 
contain both biological and physical terms. We present 
5 statistically distinct metabolism models used to 
estimate the biological components of GPP, R, and 
NEP (Table 1). Within each of these 5 models is a term 
for gas exchange (k), which can be calculated from 1 
of 7 physical models (Table 2). LakeMetabolizer 
currently only operates on time series free of missing 
values and with evenly spaced observations, and the 
following model descriptions assume complete and 
regular time series.

Metabolism models

Bookkeeping
The simplest metabolism model included in LakeMetabo-
lizer is known as the “bookkeeping” method (Odum 1956, 
Cole et al. 2000) and is expressed as metab.bookkeep. 
Bookkeeping is unique among the metabolism models we 
included because it does not include error terms and does 
not estimate metabolism parameters from data. In this 
method, the daily metabolism rate NEP (as O2 in mg L−1 d−1) 
is calculated as the average of the time discrete NEPt  
(mg L−1 Δt−1). The bookkeeping method attributes changes 
in DO between consecutive observations (time elapsed = Δt) 
to NEPt and discrete gas exchange: 

	 ∆DO = NEPt-1 × ∆t + Ft-1.	 (1)

Gas exchange (as O2) over a discrete period (F; mg L−1 = g m−3) 
is calculated as

  						       (2)

where k (m t−1) is the coefficient of gas exchange, z is the 
depth of the surface mixed layer (m), and Os is the 
saturated oxygen concentration, calculated from salinity, 
temperature, and atmospheric pressure. NEPt is the 
balance between gross primary production (GPPt) and 
respiration (Rt) occurring at time t:

	 NEPt = GPPt + Rt .	 (3)

During darkness, GPPt is 0, which allows us to estimate 
the average rate of O2 respiration (Rμ; mg L−1 Δt−1) from 
the discrete rates of NEPt for all observations occurring at 
night (in the morning before sunrise, and in the evening 
after sunset): 

 						        
(4)

where k is the number of nighttime observations. Total 
nighttime respiration, Rnight (O2 in mg L−1 d−1), is the 
product of Rμ and k. By making the assumption that the 
rate of respiration is constant throughout the 24-hour 
period, the total daytime respiration (Rday; mg L−1 d−1) can 
similarly be calculated as the product of Rμ and the 
duration of the daytime period (period after sunrise and 
before sunset). Because NEP is the balance between GPP 
and R, the rate of GPP (mg L−1 d−1) can be calculated as:

	 GPP = NEPday − Rday.	 (5)

For complete and regular time series, the expected number 
of observations in a day is n, such that if Δt = 5 minutes 
then n = 288. The rate of NEP (mg L−1 d−1) is the average 



624

DOI: 10.5268/IW-6.4.883

Winslow et al.

© International Society of Limnology 2016

of NEPt for all values of t, multiplied by n. The rate of R 
(mg L−1 d−1) is the product of Rμ and n.

Ordinary least squares 
The model metab.ols estimates metabolism from 
parameters from a regression model fit using ordinary 
least squares (OLS). The approach taken in metab.ols 
follows Batt and Carpenter (2012), although McNair et 
al. (2013) have also employed OLS to estimate 
metabolism. In metab.ols, linear regression is used to 
predict biologically driven changes in DO from observa-
tions of irradiance (I) and the natural logarithm of water 
temperature (logeT). The regression equation for metab.ols 
is: 

	 O = Xβ + ε,	 (6) 

where O is an n × 1 (n is the number of time steps, t, in a 
day) vector of O2 values calculated from the term NEPt × Δt 
(mg L−1) from equation 1; X is an n × 2 matrix of predictor 
variables with I (irradiance in arbitrary light units; e.g., 
μmol m−2 s−1) in the first column and logeT (loge°C) in the 
second column; β is a 2 × 1 vector of parameters to be 

estimated (ι [{mg L−1}{μmol m−2 s−1}−1], ρ [{mg L−1}
{loge°C}−1]); and ε is an n × 1 vector of residuals that sum 
to zero, which are assumed to be normally and identically 
distributed with a mean of 0 and a variance of σ2. Thus, 
after fitting the parameters in β (ι, ρ), NEP at a time step t 
can be estimated as:

	 NEPt × ∆t = ι × It + ρ × logeTt,	 (7)

where ι × It = GPPt × Δt, and ρ × logeTt = Rt × Δt. This 
formulation of respiration reflects the dependency of 
biochemical reaction rates on temperature via the Boltzmann-
Arrhenius equation, in particular the relatively greater 
temperature dependence of respiration relative to photo-
synthesis as well as the empirical evidence for the 
importance of temperature to respiration rates across 
ecosystems, especially in aquatic ecosystems (Yvon-
Durocher et al. 2012). Daily rates of metabolism (as O2 in 
mg L−1 d−1) were calculated by averaging NEPt, GPPt, and 
Rt across all t, then multiplying each average by N. 

Model Underlying statistics Error 
structure

Error type Parameters 
fit

Photosynthesis-
irradiance 

relationship

Respiration-
temperature 
relationship

Output

metab.bookkeep Algebra None None None None None GPP, R, NEP
metab.bayesian Bayesian Gaussian Process & 

observation
ι, ρ, K, 
τw, τv

Linear Log-linear GPP, R, NEP, 
σGPP, σR, σNEP

metab.kalman Maximum 
likelihood & 
Kalman filter

Gaussian Process & 
observation

ι, ρ,
Q, H

Linear Log-linear GPP, R, NEP

metab.mle Maximum 
likelihood

Gaussian Observation 
or process

ι, ρ Linear Log-linear GPP, R, NEP

metab.ols Linear regression Gaussian Process ι, ρ Linear Log-linear GPP, R, NEP

Table 1. Comparisons of the structure of the 5 different metabolism models included in LakeMetabolizer. Note that other model attributes are 
accessible for some models by using the R base package function attr (e.g., posterior draws for metab.bayesian, fitted parameters for metab.ols, 
metab.mle, metab.bayesian, and metab.kalman).

Model Wind 
speed

Wind 
sensor 
height

Atm 
pressure

Air 
temp

Downwelling 
shortwave

Net 
longwave

Lake 
latitude

Lake 
area

Active 
mix 
layer 
depth

Water 
surface 
temp

Relative 
humidity

k.cole X X
k.crusius X X
k.vachon X X X
k.heiskanen X X X X X X X X X
k.macIntyre X X X X X X X X X
k.read X X X X X X X X X X X
k.read.soloviev X X X X X X X X X X X

Table 2. Required time series and metadata inputs for each gas flux coefficient model. Some data requirements can be calculated from other 
commonly observed variables.
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Maximum likelihood estimation 
The function metab.mle implements both pure observation 
and process error dynamic linear regression models to 
estimate metabolism by finding the parameter set that 
corresponds to the maximum likelihood of the model 
given the data (Hanson et al. 2008, Solomon et al. 2013). 
A simplified representation of DO (α) dynamics is:

	 αt = αt−1 + ι × It−1 + ρ × logeTt-1 + F*t-1 + εt.	 (8)
 

In this representation, parameters and notation follow 
those used in equation 7 for metab.ols: ι is a parameter 
describing GPP per unit of incoming light, I is incoming 
light (arbitrary light units; e.g., μmol m−2 s−1), ρ is a 
parameter describing average rate of respiration per 
natural log of water temperature, and logeT is the natural 
log of water temperature (°C) measured at the same depth 
of the DO observations. In the process error version of 
metab.mle, αt−1 is set to observed value (DOt−1), and εt is 
the process error (ε ~ N(0,σ2)). In the observation error 
version, αt-1 is set to the last modeled value, αo is fitted as 
an unknown parameter, and εt then becomes observation 
error. F* is the discrete atmospheric gas exchange (O2; mg 
L−1), calculated using a reformulation of equation 2, where 
DOt is replaced by αt: 

						        
(9)

 
Unlike metab.ols, the regression equation in metab.mle 
does not contain a term for DO observations; the DOt 

values from equations 1 and 6 are replaced by αt, which is 
the model-estimated concentration of oxygen. Thus, the 
current estimate of oxygen is a function of the previous 
estimate, not of the observation at the previous time step. 
To yield more accurate metabolism estimates when Δt is 
large or when F* is a significant portion of the DO mass 
balance, the gas exchange term can be solved in 
continuous time, and the process model (equation 8) re-
expressed as: 

	 αt = αt × kt-1 + –e−kt-1 × αt × kt-1 + e−kt-1 × αt-1 + εt 	 (10)

	 αt = ι × It−1 + ρ × logeTt-1 + kt-1 × Os,t−1,	 (11)

where k is the gas exchange coefficient. The negative log 
likelihood (L) of the model given the data (DO observa-
tions) was calculated from:

	  	
(12)

an algebraic rearrangement of the normal probability 
density function suited to calculating the likelihood of N 
discrete observations. The observations are DOt, the 
variance of the distribution (σ2) is the variance of the 
residuals (ε) in equation 8, and the means (αt) are oxygen 
estimates. To find the parameter estimates (and therefore 
the values of σ2 and αt) that minimize L (and maximize the 
likelihood), LakeMetabolizer uses the optim function 
(from R’s stats package; Nelder-Mead routine). Daily 
rates of GPP and R are calculated as in metab.ols, and 
NEP is calculated as the sum of GPP and R.

Kalman filter
Like metab.ols and metab.mle, metab.kalman is a 
metabolism model that includes process error and fits 
parameters, and, like metab.mle, it fits these parameters 
using maximum likelihood estimation (Batt and Carpenter 
2012). However, in addition to error derived from the 
differences between the true data generating process and 
the process defined in the metabolism model (process 
error), error can also result from inaccuracies in the obser-
vations of DO (often manifesting as noisy observations). 
This second type of error is called observation error. 
Process errors propagate throughout a time series because 
at each time step they are added to the process generating 
DO data, and part of that process includes past DO data. 
By contrast, observation errors do not propagate in such a 
manner and can be thought of as noise added to the DO 
data after they are generated. A model that makes this 
distinction between error types must explicitly consider 
both the true state of the system (which is unknown but 
would be the same as the observed state if observations 
had zero error) and the observed state of the system 
(which we measure). In such a model, the likelihood of the 
values of estimated parameters given the data can be 
computed using a Kalman filter (Kalman 1960, Harvey 1990). 
The negative log likelihood function in metab.kalman 
involves 2 key sets of equations that describe the process and 
observation components of the model:

	
	 yt = αt + ηt; η~N(0,H) 	 (13)

αt|t-1 = αt-1 + ι × It-1 + ρ × logeTt-1 + F*
t-1 + εt; ε~N(Ø,Q),   (14)

where y is observed DO; α is the true value of DO; η are 
observation errors; H is the variance of η; ι, and ρ are 
parameters to be estimated (as in metab.mle); T is water 
temperature; F* is discrete atmospheric gas exchange; ε is 
process error; and Q is the variance of ε. The subscript 
t|t−1 indicates that the estimates of α are only based on 
observations of y up to yt−1 and have not been updated to 
reflect information gained by yt. Written in a form that 
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expands F* and solves for gas exchange in continuous 
time, the process equation becomes:

       αt|t-1 = αt × kt-1 + –e−kt-1 × αt × kt-1 + e−kt-1 × αt-1 + εt 	  (15)

	 αt = ι × It-1 + ρ × logeTt-1 + kt-1 × Os,t-1.	 (16)

In addition to making predictions for the system state at 
each time step, the Kalman filter also makes predictions of 
the error covariance matrix, P, which is a measure of the 
accuracy of the estimate of the state in equation 13: 

  						    
(17)

To incorporate the new information gained from the 
current observation of DO, yt, the Kalman filter updates 
the estimates of the predicted values by accounting for the 
current observation and the relative uncertainty 
surrounding the predictions and the observations. This 
process is akin to a weighted average of the prediction and 
the observation using precision (inverse of variance) as 
the weights. The updating equations are:

	 Et = Pt|t-1 + H, 	 (18)

						    
(19)

 						    
(20)

where Et is the total variance of model error at time t 
(process and observation error variance). In this implemen-
tation of the Kalman filter, metab.kalman initiates Pt=1 with 
Q, and αt=1 with yt=1. The parameters to be estimated are Q, 
H, ι, and ρ. The negative log likelihood, L, of the 
parameter estimates (model) given the data is:

 	

						      (21)

After fitting parameters, a set of equations similar to those 
used in the Kalman filter can be used to smooth the DO 
time series. The Kalman smoother works by using the 
same observation, prediction, and updating equations as 
the Kalman filter but includes an additional smoothing 
step at each iteration:

  	 					   

(22)

	 αt* = αt + Pt* × (α*t+1 − αt|t-1), 	 (23)

where α*t is the smoothed estimate of DO at time t. This 
smoothed time series is different from a time series of 
predicted values, such as may be produced by metab.ols or 
metab.mle, because the smoothed values are weighted 
between the process and the observations. For example, 
when observation variance, H, is high relative to the state 
uncertainty, P, then the smoother will yield values that 
adhere more closely to the model estimates than to the 
observed data.

Bayesian
The final metabolism model in LakeMetabolizer is metab.
bayesian, which invokes a Bayesian statistical philosophy 
to estimate metabolism parameters (Holtgrieve et al. 2010, 
2013). The Bayesian model has the same underlying 
model structure as metab.kalman and includes both 
process and observation error. As was the case in the 
Kalman filter model, metab.bayesian distinguishes among 
3 categories of DO values: y represents the observations 
of DO that come from sensor measurements, α the true but 
unknown values of DO, and α* the model’s estimates of 
the true value. The metab.bayesian models observations of 
DO as random deviations from the true value of DO:

	 yt ~ N(αt,τv).	 (24)

An observation of DO is normally distributed with a 
mean equal to its corresponding true value, and a 
precision (precision is the reciprocal of variance and is 
commonly used in Bayesian formulations of the normal 
distribution) of τv (equation 24). Thus, τv is the precision 
of the observation error (similar to H in equation 13), 
and the smaller τv is, the noisier the observations will be 
with respect to the true values. Note that all models in 
LakeMetabolizer (with the exception of metab.bookkeep) 
“fit” parameter values to data by making a comparison between 
observed and theoretical values of DO. In metab.bayesian, this 
comparison is made in equation 25. To make this 
comparison, we define a true value of DO, αt, as being 
normally distributed with a mean α*t and precision τw:

	 αt ~ N(αt*,τw ). 	 (25)

The process precision, τw, is analogous to the reciprocal of 
the process variance in metab.kalman (Q in equation 14). 
The important distinction between process and 
observation error is that process error at time t affects the 
state of the system at time t + k (k = Ø, 1, … T − t) because 
the state evolves dynamically, whereas observation error at 
time t only affects the state at the same time. Both τv and τw 
are given minimally informative priors that follow a 
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gamma distribution with shape and rate parameters of 
0.001 (~Γ[0.001, 0.001]). The equation structure for 
metab.bayesian is similar to equations 13–16 in 
metab.kalman; however, uncertainties are handled 
differently in the 2 approaches:

		                				   (26) 

	 αt = Xt-1 × β + kt-1 × Os,t−1, and 	 (27)

		  				  
(28)

Equation 26 shows how αt* depends on the value of α at 
the previous time step (most clearly seen in the case where 
k = Ø), and thus why variability associated with τw 
propagates through the time series. In equation 28, K*t is a 
stochastic node, with K*t ~ N(Kt, σκ), where the mean is the 
coefficient of gas exchange and the precision is supplied 
by the user. Although the gas exchange models do not 
return variance estimates to be supplied as prior 
information, variance may be drawn from competing 
models of gas exchange, for example, because competing 
models sometimes produce widely different estimates of 
K. Precision of K does not have to be supplied by the 
user, however, in which case the default is 1/(0.1 × Kt). 
Just as the gas exchange coefficient is prior information 
for K, the user can also supply prior information for the 
fitted GPP and R parameters (ɩ and ρ), implemented in 
metab.bayesian as normal distributions about the mean, ιt 
~ N(ɩt, σɩ) and ρt ~ N(ρt, σρ). If not specified, the priors for 
ɩ and ρ are noninformative with a mean of 0 and variance 
of 1 × 105. To estimate metabolism as in the other param-
eterized models, the median of the posterior of the 
parameters is used to represent the posterior estimate as a 
scalar. The medians of the posteriors are used to estimate 
GPP and R as in previous models. The uncertainty of 
GPP and R is returned to the user as the standard 
deviation and is expressed as the square root of the 
variance of the posterior of the respective parameter 
estimates (ι and ρ), multiplied by the square of the corre-
sponding covariate (irradiance and loge [water 
temperature]). Similarly, NEP is calculated as the sum of 
GPP and R, and the standard deviation of NEP is the 
square root of the sum of the variances of GPP and R. 
The full set of posterior draws is also returned to allow 
the user to check for model convergence and examine the 
distribution of posterior draws.

Gas transfer coefficient models

A large number of models have been published that 
estimate gas flux. An overview of all models currently 
included with LakeMetabolizer (Table 2) shows the 
required input data for each. All models of gas exchange 
return a k600 value, a gas exchange normalized to a Schmidt 
number (Sc) of 600, or CO2 and O2 at 20 and 17.5 °C, 
respectively. 

Logarithmic wind speed profile
For consistency across different systems, wind speed used 
to estimate gas flux is normalized to U10, which is the 
wind speed at a height of 10 m above the water surface. In 
most situations, it is prohibitively difficult or at least 
impractical to build a 10 m tall tower on a lake, and as 
such, many over-lake wind speed measurements are 
observed at heights between 1 and 3 m. To estimate U10 
from the lower height measurements, a neutrally stable 
boundary layer assumption can be used (Arya 1988). 
Using this assumption, U10 is estimated as:

	  	 	                (29)

where Hwind is the height of the wind observation in meters 
and “Wind” is the observed wind speed to be scaled. This 
functionality is expressed in the LakeMetabolizer function 
wind.scale.

Empirical wind-based gas exchange models

Air–water gas exchange estimated using tracer gas 
budgets have yielded strong relationships between k and 
over-lake measurements of wind speed. Many of these 
studies resulted in the development of empirical models 
for k based on measured wind speed, and these models 
assume the only dynamic contribution to k is that from 
wind. Two of the most commonly cited wind-based 
parameterizations of k are Cole and Caraco (1998) and 
Crusius and Wanninkhof (2003), whereas Vachon and 
Prairie (2013) also include lake area effects in their 
wind-based k estimate. 

Cole and Caraco. One of the most widely used models 
in lakes is based on a power relationship of k600 with wind 
speed (Cole and Caraco 1998). This work was based on 
the relationship between mean wind speed and k600 

estimates using sulfur hexafluoride (SF6) tracers across 
multiple lakes, formulated as: 

	 k600 = 2.07 + (0.215 × U101.7 ). 	 (30)

This functionality is expressed in LakeMetabolizer as  
k.cole.
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Crusius and Wanninkhof. Crusius and Wanninkhof 
(2003) related k600 in lakes to wind speed using an SF6 

tracer study in a small oligotrophic lake. From their obser-
vations, they created 4 different mathematical models 
relating wind speed to k600. Because the coefficients of the 
simple linear model were not reported in the manuscript, 
we only included 3 of the 4 forms (bilinear, power, and 
constant/linear). These different models can be accessed 
using the method parameter of the k.crusius function. 

Vachon and Prairie. Although k~wind relationships are 
usually strong, several reasons explain why an exclusively 
wind-based gas exchange model might inaccurately 
estimate k. For example, in small lakes, higher wind 
sheltering and lower fetch reduce wave height for a given 
wind speed, thus reducing energy transferred from wind to 
waves. Seeing that lake ecosystem size may influence 
k~wind relationships, Vachon and Prairie (2013) 
developed a wind-based gas exchange model that takes 
into account the effect of lake ecosystem size. They 
developed this model empirically with gas transfer data 
collected from lakes varying in lake size, formulated as:

      k600 = 2.51 + 1.48 × U10 + 0.39 × U10 × log10 LA,	 (31)

where LA is lake area in km2. This gas transfer function is 
expressed in LakeMetabolizer as k.vachon. 

Surface renewal gas exchange models

Surface renewal gas exchange models take into account a 
suite of processes that influence gas exchange other than 
wind. For example, transitioning from day to night causes 
epilimnetic heat loss, which can be an important source of 
turbulence in small lakes (MacIntyre et al. 2010, Read et 
al. 2012). The higher relative importance of convective 
mixing on gas exchange in small lakes has increased the 
popularity of surface renewal models in both gas exchange 
and metabolism research (Raymond et al. 2013, Dugan et 
al. 2016).	

MacIntyre. The surface renewal model was formulated 
by MacIntyre et al. (2010) as:

	 k600 = c1 (ευ)0.25, 	 (32)

where c1 = 1.2 is an empirically derived constant, υ is the 
kinematic viscosity of water (Mays 2005), and ε is the rate 
of dissipation of turbulent kinetic energy, calculated 
following Lombardo and Gregg (1989) as:

      						    
(33)

where c2 and c3 are both empirically derived constants 
0.84 and 0.58, respectively; u*w is the water-side friction 

velocity (m s−1), calculated using the rLakeAnalyzer 
package (Winslow et al. 2016); κ = 0.41 is the von Karman 
constant; and zaml is the depth of the actively mixing layer 
(m). The buoyancy flux, β (m2 s−3), is defined as:

  						    
(34)

where g = 9.81 is the gravitational acceleration (m s−2), α is 
the thermal expansion coefficient for water (°C−1), H* is the 
effective heat flux (Kim 1976; J m−2 s−1), Cpw is the specific 
heat of water at constant pressure (4186 J kg−1 °C−1), and ρo 
is the density of water (kg m−3). This surface renewal 
model is implemented in LakeMetabolizer as  
k.macIntyre.

Heiskanen. The k.heiskanen function returns gas flux 
estimates following methods from Heiskanen et al. (2014), 
who derived k600 using a boundary layer approach that 
includes wind shear and buoyancy flux. They assert that 
their equation is a better independent method of estimating 
k600 than surface renewal models because there is no 
similarity scaling. However, 2 coefficients are used to 
calibrate the model based on eddy covariance results:

       	 (35)

where the coefficients were fitted as C1 = 0.00015 and  
C2 = 0.07, U is the measured wind speed (m s−1) scaled to a 
height of 10 m, Sc is the Schmidt number, and w* is the 
penetrative convective velocity (m s−1) as calculated by 
Imberger (1985). The parameter w* is defined similarly to 
MacIntyre et al. (2010) earlier as:

		  			   (36)

Heiskanen et al. (2014) also applied the MacIntyre et al. 
(2010) model with c1, c2, and c3 dimensionless coefficients 
as 0.50, 0.77, and 0.3, respectively, and zaml as a constant 
at 0.15 m. 

Read. Read et al. (2012) parameterized k600 as a 
function of surface mixed layer turbulence due to the 
additive effects of wind shear and convection, expressed 
as k.read in LakeMetabolizer. Similar to MacIntyre et al. 
(2010), the surface renewal model for k600 follows 
equation 32, but the formulation of ε and the value of c1 
(referred to as μ by Read et al. 2012) differ. The coefficient 
c1 was set to 0.29 following the lower bounds of estimates 
by Zappa et al. (2007), and ε was calculated as: 

	 			       	               
(37)

where τt is the tangential shear stress and δv is the thickness 
of the viscous sublayer (see Soloviev et al. 2007 for 
additional details). 
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temperature, salinity, and barometric pressure (Garcia and 
Gordon 1992). Deviation from saturation can be caused 
by physical and biological processes, such as 
entrainment of oxygen depleted hypolimnetic water 
and production of oxygen from primary producers. The 
function o2.at.sat uses water temperature measured at 
the oxygen sensor, barometric pressure (alternatively 
altitude if barometric pressure not supplied), and 
optional salinity to calculate Os. The default fitting 
method is garcia, based on equations in Garcia and 
Gordon (1992), with 2 other fitting methods available 
if specified (benson from Benson and Krause 1984; 
weiss from Weiss 1970). 

External Resources

To avoid duplicating existing functionality, LakeMe-
tabolizer imports basic functions from external sources 
when applicable.

rLakeAnalyzer

For physically related calculations and a few helper 
functions, LakeMetabolizer uses functionality from 
rLakeAnalyzer (Winslow et al. 2016), an R translation 
of the Matlab-based lake physics tool (Read et al. 
2011). Specifically, rLakeAnalyzer is used where water 
density is calculated from temperature (ts.water.density) 
and the depth of the upper mixed layer is estimated  
(ts.meta.depths). Helper functions for importing a 
common text-file format for time series limnological 
data are also recommended for use in several code 
examples (load.ts, load.all.data). rLakeAnalyzer is also 
distributed on the Comprehensive R Archive Network 
(CRAN), so this dependency will automatically install 
during the installation of LakeMetabolizer.

JAGS

Estimates of the posterior distribution of the 
parameters in metab.bayesian were sampled using 
Gibbs sampling implemented in Just Another Gibbs 
Sampler (JAGS, http://mcmc-jags.sourceforge.net/). 
JAGS is a free, open-source, multiplatform software 
external to R (not an R package) and therefore must be 
downloaded and installed separately. However, 
interfacing with JAGS in R is simplified through the 
use of several R packages: R2jags and rjags. Both of 
these packages are available on CRAN and are 
installed automatically as default dependencies of 
LakeMetabolizer.

Read and Soloviev. We expanded the model used in 
Read et al. (2012) with the addition of a breaking wave 
component from Soloviev et al. (2007), εw, as:

	 	                                                           
(38)

where Ap is a weighting coefficient due to turbulence 
patchiness of breaking-wave generated turbulence;  
αw = 100, Sq  = 0.2, B = 16.6, and cT = 0.6 and are dimen-
sionless constants defined by Soloviev et al. (2007); Ke 
and Kecr are the Keulegan and critical Keulegan numbers, 
respectively; and Aw is wave age. For further details on the 
parameters Ap and Aw, see Soloviev et al. (2007). The 
parameterization for the air–water gas exchange is then 
represented by the sum of the interfacial (ε) and bubble-
mediated (Kb) components as:

	 k600 = ε + Kb,	 (39)

where ε = εc + εu + εw is the sum of convection εc, shear εu, 
and wave εw terms; and Kb is parameterized following 
Woolf (1997) as:

		            (40)

where W is a parameterization of the whitecap fraction 
due to wave breaking, β0 is the Ostwald gas solubility and 
Sc is the Schmidt number. This model is expressed in 
LakeMetabolizer as k.read.soloviev. 

Converting k600 to a gas- and temperature-
specific value 

The transfer velocity estimated using any of the gas 
transfer models described earlier must be converted to a 
gas- and temperature-specific transfer velocity, which is 
typically O2 for lake metabolism models. The function 
k600.2.kGAS converts to a gas- and temperature-specific 
transfer velocity by taking in arguments of k600, water 
temperature, and type of gas. This function supports the 
calculation of 8 different gas transfer velocities (He, O2, 
CO2, CH4, SF6, N2O, Ar, N2) in water temperatures ranging 
from 4 to 35 °C (Raymond et al. 2012). 

Estimating 100% saturation of DO from 
temperature, pressure, and salinity

The rate at which gas exchanges between the water and 
atmosphere (F) is dependent both on the piston velocity, 
modeled using one of the k600 methods described earlier 
and the concentration gradient between observed or 
modeled DO and 100% saturation of DO at a given 
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Example workflow 

All data must be quality assured/quality controlled (QA/
QC) before use in metabolism models. At a minimum, data 
should be cleaned of extreme errors in an automated fashion 
(e.g., negative DO values, data logger error codes). In 
addition, we strongly suggest manual inspection of all the 
data to identify data gaps, anomalies not detected by the 
automated process, sensor drift during deployment, non-real 
repeat values, or periods of sensor calibration. More 
advanced QA/QC includes gap filling techniques that 
attempt to recreate data not observed or poorly observed. 

Estimating whole-lake metabolism 

At a minimum, high-frequency DO (recommended 5 min 
frequency), irradiance (typically photosynthetically active 
radiation [PAR]), wind speed, and water temperature at 

the depth of the DO sensor are required for estimating 
metabolism using the free-water oxygen technique (Table 
3). The datasets imported with LakeMetabolizer include 
the minimum data requirements described above as well 
as high-frequency temperature profiles, relative humidity, 
and lake metadata. 

A series of steps are necessary for calculating estimates of 
lake metabolism (Table 4). The R code used to generate 
metabolism estimates and figures for Sparkling Lake is 
available within the package as a demo [view available demos 
using demo(package=’LakeMetabolizer’) R function call,  
and run examples using demo(‘fig_metab’, package=’Lake
Metabolizer’)]. From the high-frequency data, several 
derived data need to be calculated before running the 
metabolism model, including the gas exchange coefficient 
(k.gas), mixed layer depth (z.mix), and DO at 100% 
saturation (do.sat). In our metabolism example, we use the 
wind-based Cole and Caraco (1998) method discussed 

Table 4. Example workflow for calculating lake metabolism estimates using LakeMetabolizer.

Step Description 
1) Data inventory Determine which types of data and metadata are available (e.g., columns of Table 2). 

Make sure that data have at least the minimum level of QA/QC.
2) Consider potential methods Compare list of data available with Table 2 and 3 to determine which model(s) are 

available for use. Some data can be calculated from other commonly observed data 
(e.g., shortwave radiation from PAR).

3) Choose models Choose gas transfer coefficient and metabolism model. 
4) Load data Load necessary time series and metadata. load.ts, load.meta, load.bathy, and load.all.data 

are useful loading functions for this step.
5) Derive time series data Additional time series data may need to be derived depending on model choice and 

available data (see Table 2 and 3).
 5a) do.sat Calculate do.sat using the function o2.at.sat.
5b)   k.gas          Calculate k.gas using one of the gas transfer models and convert from k600 to gas-

specific k.
 5c) z.mix Calculate z.mix using the imported function ts.meta.depths from rLakeAnalyzer.

6) Run metabolism model Run the metabolism model using the function metab and specify the method as 
either bayesian, bookkeep, kalman, mle, or ols.

Table 3. Required input data to calculate lake metabolism using the free-water technique, with corresponding helpful derivation or estimation 
functions. 

Input Details Helpful Functions
doobs DO concentration observations (mg L−1) load.all.data, load.ts (from rLakeAnalyzer)
do.sat Equilibrium DO concentration for specific temperature, 

pressure and salinity (mg L−1)
o2.at.sat

k.gas Gas and temperature specific gas transfer coefficient (m−1) k600.2.kGAS, k.* models
irr Photosynthetically active radiation (typically µmol m−2 s−1) sw.to.par

z.mix Actively mixed layer depth (m) ts.meta.depths (from rLakeAnalyzer)
wtr Water temperature used to: calculate k.gas, estimate the z.mix, 

and fit respiration (°C)
load.all.data, load.ts (from rLakeAnalyzer)
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earlier for calculating k.gas (Table 4, step 5b). The 
supplied wind speed data must first be scaled to 10 m 
from recorded wind height before using any gas 
exchange model, and the gas exchange coefficient must 
be converted from k600 to gas-specific k, oxygen in our 
case (Table 4, step 5b). Coefficient z.mix is calculated 
using ts.meta.depths, a function imported from rLakeAna-
lyzer (Table 4, step 5c), and do.sat is calculated using the 
temperature at the DO sensor depth and altitude (Table 4, 
step 5a). A more accurate calculation of do.sat uses 
barometric pressure instead of altitude; however, our 
example dataset does not contain barometric pressure. 

After calculating these derived data, a metabolism 
model can be applied to each day of the time series data 
using the metab function, which recognizes necessary 
time series data based on column headings in the time 
series data frame, including datetime, do.obs, do.sat, 
k.gas, z.mix, irr, and wtr. Because all metabolism models 
can be run using the same input, we ran all 5 models 
against the example dataset.

Dataset description

An example dataset from Sparkling Lake (46.01°N, 
89.70°W) is included in the package to show the 
necessary steps to estimate whole-lake metabolism. The 
example dataset is provided by the North Temperate 
Lakes Long Term Ecological Research Program (NTL 
LTER; https://lter.limnology.wisc.edu/; Magnuson and 
Bowser 1990). Sparkling Lake is a 64 ha, clear (mean 
light extinction coefficient = 0.35), deep (mean depth = 
11 m), oligotrophic (mean Chl-a = 2.2 µg L−1), seepage 
lake (Krabbenhoft et al. 1990). 

The 9-day dataset was taken 2–10 July 2009 when 
Sparkling Lake was strongly stratified, with Schmidt 
stability steadily increasing over the time series and 
varying between 278 and 394 J m−2 (calculated using  
ts.schmidt.stability from rLakeAnalyzer). The seasonal 
thermocline varied between 6.6 and 10.4 m (calculated 
using ts.thermo.depth from rLakeAnalyzer; Fig. 1), and 
the metalimnion thickness varied between 1.5 and 7.1 m 
with a mean metalimnion thickness of 5.4 m (calculated 
using ts.meta.depths from rLakeAnalzyer). Wind speed 
exhibited a diel cycle over most days, and DO deviations 
from saturation displayed diel patterns consistent with 
physical and metabolic expectations (e.g., primary 
production during day increased observed DO, respiration 
at night decreased observed DO at night, wind-driven gas 
transfer equilibrated observed DO toward Os; Fig. 1). Fig. 1. Time series data for the Sparkling Lake dataset included in 

the LakeMetabolizer package showing variations in (a) thermocline 
depth (black solid line) and metalimnion top and bottom (grey 
dashed lines), (b) Schmidt stability, (c) photosynthetically active 
radiation (PAR), (d) wind speed, and (e) DO deviations from 
saturation.
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Results 

Different gas transfer velocity models returned different 
estimates of k600 (Fig. 2), with averages ranging from a 
minimum of 0.47 m−1 for k.vachon to a max of 2.37 m−1 for 
k.heiskanen. The models based solely on wind (k.cole, 
k.crusius) have correlating diel patterns with different 
magnitudes. The other models differed in both magnitude and 
diel patterns, depending on the underlying model, and had 
values dependent on lake-specific hydrologic, morphologic, 
and atmospheric conditions. Although not explored here, 
choice of gas transfer velocity model can have a significant 
influence on metabolism estimates; see Dugan et al. (2016) 
for a more in-depth discussion of this topic. 

Metabolism estimates varied among models (Table 5, 
Fig. 3). For both R and GPP, metab.bookkeep had the 
lowest estimates, whereas metab.mle and metab.kalman 
had the highest GPP and R estimates, respectively. For this 
9-day dataset, NEP was not consistently positive or 
negative, indicating the uncertainty of such estimates, 
especially on short timescales. The metab.kalman and 
metab.bookkeep models returned the smallest and largest 
NEP values, respectively.

Discussion 

Code availability and distribution

To maximize usefulness and availability, we built 
LakeMetabolizer as a native R package and submitted it to 
CRAN under the name LakeMetabolizer. Through CRAN, 
the package can be installed using the command install.
packages(‘LakeMetabolizer’). The code for LakeMetabo-
lizer has been released under the GPL version 2 open-source 
license and is available both as a package on CRAN and 
under  the  version  management  repository  used  for 
development  (https://github.com/GLEON/LakeMetabo-
lizer). In the full spirit of open-source software and open 
science, we welcome and encourage contributions that 
improve or expand the package functionality.

Performance

Different components of LakeMetabolizer have different 
runtimes typically related to the complexity of metabolism 
and gas flux models used. For example, the gas flux model 
k.cole is a rapid, simple algebraic operation applied to 
wind speed, and as such the runtime is ~50 ms for our 

Fig. 2. Time series of estimated k600 values showing the results of each model for 2 days: (a) a low wind day, (b) a high wind day. A 3-hour 
moving average was applied to each time series to remove noise.

Table 5. Estimated average metabolism based on the 9-day Sparkling Lake example dataset. Values in parentheses are means with impossible 
GPP and R values first removed

Model Mean GPP 
(as O2 mg L−1 d−1)

Mean R 
(as O2 mg L−1 d−1)

Mean NEP 
(as O2 mg L−1 d−1)

metab.ols 0.210 (0.262) −0.239 (−0.336) −0.029
metab.mle 0.235 (0.284) −0.275 (−0.275) −0.040
metab.kalman 0.198 (0.235) −0.291 (−0.351) −0.093
metab.bayesian 0.210 (0.292) −0.241 (−0.275) −0.031
metab.bookkeep 0.185 (0.255) −0.215 (−0.244) −0.028
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9-day Sparkling Lake example (~1000 observations). In 
contrast, k.read is a complex model that must first 
calculate a number of subparameters before combining 
them to estimate a gas flux coefficient. This lengthens 
k.read runtimes to ~1.5 s for the 9-day example. 
Metabolism calculations have an even larger runtime range; 
the simplest model, metab.bookkeep, has a runtime of ~10 ms, 
and the more computationally intensive metab.bayesian takes 
closer to 45 s for the 9-day example. 

For certain functions, we worked to improve 
performance by using external programs (like JAGS for 
metab.bayesian) or by translating key components from 
the interpreted R language to the compiled C language. 
The components in the package written in C are substan-
tially faster than those written in R. By translating the 
central model loops of metab.kalman and metab.mle, the 
performance of these models was improved by several 
orders of magnitude. Although other components may 
benefit from the translation of pieces from R to C, we 
currently do not plan to add such complexity until 
improved performance is clearly needed.

Program limitations and future questions

The package estimates metabolism with the most widely 
used modeling techniques in the field. Although published 
implementations differ in a number of areas, no clear 
community consensus points to a single model strategy.

Dealing with unrealistic estimates 

As defined, negative GPP and positive R are ecologi-
cally impossible, but unfortunately, unconstrained 
metabolism estimates using free-water oxygen often 
return negative GPP and positive R. Two general 
strategies exist to handle these model outputs. First, 
the model can be run unconstrained and the impossible 
estimates can be classified as nonsensical and removed 
from subsequent analysis. These impossible results are 
often from days when physical processes (e.g., wind 
mixing) dominate the DO signal and therefore are days 
when the biological signal is overwhelmed by other 
sources of DO variability (Rose et al. 2014). Second, 
the model can be written to constrain the parameters 
and force the estimation of positive GPP and negative 
R using a priori information about the possible values 
of GPP and R.

It is unclear which technique should be chosen to 
address impossible metabolism parameter estimates. 
Forcing the parameters may simply be masking a data-
quality problem, returning an estimate with the correct 
sign while not improving accuracy. Alternatively, 
impossible values could arise from rough likelihood 
surfaces where multiple parameter sets are similarly 
likely but only one is possible; thus, if we incorporated 
this prior information about the sign of these values, we 
may achieve better results. Evaluating this difference is 
itself challenging because most alternative methods of 
estimating metabolism are time consuming and suffer 
from their own biases. Without a clear path, we chose to 
produce only unconstrained parameter estimates from 
the metabolism models. Future work is required to 
determine an optimal strategy.

Even if constrained or unconstrained metabolism 
models produce estimates with the correct sign, the 
model fit can be poor. In these situations, estimates of 
uncertainty can help guide the investigator, but there is 
not a consensus on an optimal strategy. Strategies 
include, but are not limited to, keeping all metabolism 
estimates except for extremely uncertain values 
(Solomon et al. 2013), setting more rigorous thresholds 
of uncertainty (Cremona et al. 2014), down-weighting 
poorly fit metabolism days based on uncertainty 
estimates (Rose et al. 2014), or fitting metabolism 
parameters over multiple days (Van de Bogert et al. 

Fig. 3. Results of estimating metabolism for the Sparkling Lake 
example using all available models. Each line shows metabolism 
estimated with a different model.
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2012). Currently, only metab.bayesian returns estimates 
of uncertainty, but future versions of LakeMetabolizer 
may include bootstrapping functions as an estimate of 
parameter uncertainty for the other metabolism 
models. 

Photosynthesis–irradiance relationship

All metabolism models except for the bookkeeping 
method estimate GPP using a linear light dependency of 
primary production. Although this approach may be 
adequate for many lakes (Hanson et al. 2008), evidence 
indicates that light saturation or even inhibition may more 
accurately model metabolism in some lakes (e.g., 
Brighenti et al. 2015). Integration of nonlinear primary 
production relationships with light may be included in 
later versions of the package.

Metabolism estimates using multiple sensor 
locations

Currently, LakeMetabolizer supports estimates of 
metabolism from a DO sensor at a single location. 
Although single-depth DO data are most common, the 
usefulness of vertical and horizontal integration of 
whole-lake metabolism calculated from concurrently 
deployed sensors is recognized (Coloso et al. 2008, Staehr 
et al. 2012a, Van de Bogert et al. 2012, Obrador et al. 
2014). Future versions of the package may include 
calculation of whole-lake metabolism across multiple DO 
sensors, incorporating advective and diffusive exchange 
across lake layers for vertically spaced sensors, and kriging 
methods for interpolating horizontally spaced sensors. 

Which model to use

Although metabolism estimates were similar for Sparkling 
Lake, some variation among the models was noted (Table 5, 
Fig. 3), so which model is correct? The goal of this 
manuscript was not to suggest one model is more correct 
than another, a perplexing task because validation of 
estimates would require a separate method of metabolism 
estimation, which would have its own methodological biases. 
Although further work is needed to establish a reliable way to 
assess model accuracy, we do provide some guidance to 
metabolism model choice because a certain model may be 
more appropriate over another in some situations. 

The metab.bookkeep model may be most appropriate to 
use when the user wants quick computation time or is 
limited by time series data, the ecosystem has irregular 
photosynthetic–irradiance relationships, or in nontradi-
tional diel O2 sampling situations (e.g., Godwin et al. 
2014). Because metab.bookkeep does not incorporate light-

dependent primary production, it would be the model of 
choice if the user did not have light data. Additionally, 
metab.bookkeep has the fewest statistical assumptions of 
any of the metabolism models and likely has the simplest 
and most transparent interpretation. However, metab.bookkeep 
subsumes any process and observation error into the 
parameter estimates, which can greatly influence 
metabolism estimates if error is large (Batt and Carpenter 
2012). Accounting for observational error helps overcome 
these biased estimates, as formulated in metab.ols, metab.mle, 
metab.kalman, and metab.bayesian. Both metab.kalman and 
metab.bayesian incorporate process error, and metab.kalman 
has been shown to be most useful when the DO data are noisy, 
for example, when estimating metabolism in the metalimnion 
(Batt and Carpenter 2012). The metab.bayesian model is 
unique because it also estimates the gas exchange 
coefficient and may be most useful in systems where gas 
exchange is not well known (e.g., wind speed recorded far 
away from the lake). Many other scenarios likely exist 
where using one model is advantageous over another, and 
we recommend the user first assess the quality of time 
series data (e.g., noisy DO, light-dependent photosynthe-
sis) and the type of question to be addressed (e.g., 
uncertainty in estimates) before choosing a metabolism 
model. 

 We acknowledge that additional limitations of the 
package models not listed here are likely; however, we release 
this package under an open source license to maximize utility 
for the community of users. We strongly encourage 
suggestions and contributions that will improve the package.

Conclusions

We created a collection of numerical modeling tools 
for estimating metabolic parameters in lakes using 
free-water DO observations. Included is a collection of 
additional models for estimating input parameters that 
are difficult or rarely directly observed (e.g., gas flux 
coefficient) based on the most recently available 
published methodologies. LakeMetabolizer was 
developed for the free and open-source R scientific 
computing platform, making it accessible for anyone 
to use and available on all common platforms 
(Windows, OS X, Linux). All source code is open and 
freely available, contributing to reproducible research 
and scientific transparency. As with previous scientific 
tools, LakeMetabolizer will play a role in increasing 
the recognition and impact of open-source scientific 
software. We hope that with this package, ecologists 
can focus not on recreating complex metabolism 
models, but instead on analyzing data and knowledge 
creation, increasing our understanding of the metabolic 
distribution of lakes worldwide. 
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