362 research outputs found

    Maternal Fatty Fish Intake Prior to and during Pregnancy and Risks of Adverse Birth Outcomes: Findings from a British Cohort

    Get PDF
    Fish is an important source of the essential fatty acids contributing to foetal growth and development, but the evidence linking maternal fatty fish consumption with birth outcomes is inconsistent. In the UK, pregnant women are recommended to consume no more than two 140 g portions of fatty fish per week. This study aimed to investigate the association between fatty fish consumption before and during pregnancy with preterm birth and size at birth in a prospective birth cohort. Dietary intake data were acquired from a cohort of 1208 pregnant women in Leeds, UK (CARE Study) to assess preconception and trimester-specific fatty fish consumption using questionnaires. Multiple 24-h recalls during pregnancy were used to estimate an average fatty fish portion size. Intake was classified as ≤2, >2 portions/week and no fish categories. Following the exclusion of women taking cod liver oil and/or omega-3 supplements, the associations between fatty fish intake with size at birth and preterm delivery (<37 weeks gestation) were examined in multivariable regression models adjusting for confounders including salivary cotinine as a biomarker of smoking status.. The proportion of women reporting any fatty fish intake decreased throughout pregnancy, with the lowest proportion observed in trimester 3 (43%). Mean intakes amongst consumers were considerably lower than that recommended, with the lowest intake amongst consumers observed in the 1st trimester (106 g/week, 95% CI: 99, 113). This was partly due to small portion sizes when consumed, with the mean portion size of fatty fish being 101 g. After adjusting for confounders, no association was observed between fatty fish intake before or during pregnancy with size at birth and preterm delivery

    The pestivirus N terminal protease N(pro) redistributes to mitochondria and peroxisomes suggesting new sites for regulation of IRF3 by N(pro.)

    Get PDF
    The N-terminal protease of pestiviruses, N(pro) is a unique viral protein, both because it is a distinct autoprotease that cleaves itself from the following polyprotein chain, and also because it binds and inactivates IRF3, a central regulator of interferon production. An important question remains the role of N(pro) in the inhibition of apoptosis. In this study, apoptotic signals induced by staurosporine, interferon, double stranded RNA, sodium arsenate and hydrogen peroxide were inhibited by expression of wild type N(pro), but not by mutant protein N(pro) C112R, which we show is less efficient at promoting degradation of IRF3, and led to the conclusion that N(pro) inhibits the stress-induced intrinsic mitochondrial pathway through inhibition of IRF3-dependent Bax activation. Both expression of N(pro) and infection with Bovine Viral Diarrhea Virus (BVDV) prevented Bax redistribution and mitochondrial fragmentation. Given the role played by signaling platforms during IRF3 activation, we have studied the subcellular distribution of N(pro) and we show that, in common with many other viral proteins, N(pro) targets mitochondria to inhibit apoptosis in response to cell stress. N(pro) itself not only relocated to mitochondria but in addition, both N(pro) and IRF3 associated with peroxisomes, with over 85% of N(pro) puncta co-distributing with PMP70, a marker for peroxisomes. In addition, peroxisomes containing N(pro) and IRF3 associated with ubiquitin. IRF3 was degraded, whereas N(pro) accumulated in response to cell stress. These results implicate mitochondria and peroxisomes as new sites for IRF3 regulation by N(pro), and highlight the role of these organelles in the anti-viral pathway

    Activation of Ventral Tegmental Area 5-HT2C Receptors Reduces Incentive Motivation

    Get PDF
    FUNDING AND DISCLOSURE The research was funded by Wellcome Trust (WT098012) to LKH; and National Institute of Health (DK056731) and the Marilyn H. Vincent Foundation to MGM. The University of Michigan Transgenic Core facility is partially supported by the NIH-funded University of Michigan Center for Gastrointestinal Research (DK034933). The remaining authors declare no conflict of interest. ACKNOWLEDGMENTS We thank Dr Celine Cansell, Ms Raffaella Chianese and the staff of the Medical Research Facility for technical assistance. We thank Dr Vladimir Orduña for the scientific advice and technical assistance.Peer reviewedPublisher PD

    The systemic lupus erythematosus IRF5 risk haplotype is associated with systemic sclerosis

    Get PDF
    Systemic sclerosis (SSc) is a fibrotic autoimmune disease in which the genetic component plays an important role. One of the strongest SSc association signals outside the human leukocyte antigen (HLA) region corresponds to interferon (IFN) regulatory factor 5 (IRF5), a major regulator of the type I IFN pathway. In this study we aimed to evaluate whether three different haplotypic blocks within this locus, which have been shown to alter the protein function influencing systemic lupus erythematosus (SLE) susceptibility, are involved in SSc susceptibility and clinical phenotypes. For that purpose, we genotyped one representative single-nucleotide polymorphism (SNP) of each block (rs10488631, rs2004640, and rs4728142) in a total of 3,361 SSc patients and 4,012 unaffected controls of Caucasian origin from Spain, Germany, The Netherlands, Italy and United Kingdom. A meta-analysis of the allele frequencies was performed to analyse the overall effect of these IRF5 genetic variants on SSc. Allelic combination and dependency tests were also carried out. The three SNPs showed strong associations with the global disease (rs4728142: P = 1.34×10&lt;sup&gt;−8&lt;/sup&gt;, OR = 1.22, CI 95% = 1.14–1.30; rs2004640: P = 4.60×10&lt;sup&gt;−7&lt;/sup&gt;, OR = 0.84, CI 95% = 0.78–0.90; rs10488631: P = 7.53×10&lt;sup&gt;−20&lt;/sup&gt;, OR = 1.63, CI 95% = 1.47–1.81). However, the association of rs2004640 with SSc was not independent of rs4728142 (conditioned P = 0.598). The haplotype containing the risk alleles (rs4728142*A-rs2004640*T-rs10488631*C: P = 9.04×10&lt;sup&gt;−22&lt;/sup&gt;, OR = 1.75, CI 95% = 1.56–1.97) better explained the observed association (likelihood P-value = 1.48×10&lt;sup&gt;−4&lt;/sup&gt;), suggesting an additive effect of the three haplotypic blocks. No statistical significance was observed in the comparisons amongst SSc patients with and without the main clinical characteristics. Our data clearly indicate that the SLE risk haplotype also influences SSc predisposition, and that this association is not sub-phenotype-specific

    Episodic Memory and Appetite Regulation in Humans

    Get PDF
    Psychological and neurobiological evidence implicates hippocampal-dependent memory processes in the control of hunger and food intake. In humans, these have been revealed in the hyperphagia that is associated with amnesia. However, it remains unclear whether 'memory for recent eating' plays a significant role in neurologically intact humans. In this study we isolated the extent to which memory for a recently consumed meal influences hunger and fullness over a three-hour period. Before lunch, half of our volunteers were shown 300 ml of soup and half were shown 500 ml. Orthogonal to this, half consumed 300 ml and half consumed 500 ml. This process yielded four separate groups (25 volunteers in each). Independent manipulation of the 'actual' and 'perceived' soup portion was achieved using a computer-controlled peristaltic pump. This was designed to either refill or draw soup from a soup bowl in a covert manner. Immediately after lunch, self-reported hunger was influenced by the actual and not the perceived amount of soup consumed. However, two and three hours after meal termination this pattern was reversed - hunger was predicted by the perceived amount and not the actual amount. Participants who thought they had consumed the larger 500-ml portion reported significantly less hunger. This was also associated with an increase in the 'expected satiation' of the soup 24-hours later. For the first time, this manipulation exposes the independent and important contribution of memory processes to satiety. Opportunities exist to capitalise on this finding to reduce energy intake in humans

    Prostacyclin reverses platelet stress fibre formation causing platelet aggregate instability

    Get PDF
    Prostacyclin (PGI2) modulates platelet activation to regulate haemostasis. Evidence has emerged to suggest that thrombi are dynamic structures with distinct areas of differing platelet activation. It was hypothesised that PGI2 could reverse platelet spreading by actin cytoskeletal modulation, leading to reduced capability of platelet aggregates to withstand a high shear environment. Our data demonstrates that post-flow of PGI2 over activated and spread platelets on fibrinogen, identified a significant reduction in platelet surface area under high shear. Exploration of the molecular mechanisms underpinning this effect revealed that PGI2 reversed stress fibre formation in adherent platelets, reduced platelet spreading, whilst simultaneously promoting actin nodule formation. The effects of PGI2 on stress fibres were mimicked by the adenylyl cyclase activator forskolin and prevented by inhibitors of protein kinase A (PKA). Stress fibre formation is a RhoA dependent process and we found that treatment of adherent platelets with PGI2 caused inhibitory phosphorylation of RhoA, reduced RhoA GTP-loading and reversal of myosin light chain phosphorylation. Phospho-RhoA was localised in actin nodules with PKA type II and a number of other phosphorylated PKA substrates. This study demonstrates that PGI2 can reverse key platelet functions after their initial activation and identifies a novel mechanism for controlling thrombosis

    Host Immune Response to Mosquito-Transmitted Chikungunya Virus Differs from That Elicited by Needle Inoculated Virus

    Get PDF
    Mosquito-borne diseases are a worldwide public health threat. Mosquitoes transmit viruses or parasites during feeding, along with salivary proteins that modulate host responses to facilitate both blood feeding and pathogen transmission. Understanding these earliest events in mosquito transmission of arboviruses by mosquitoes is essential for development and assessment of rational vaccine and treatment strategies. In this report, we compared host immune responses to chikungunya virus (CHIKV) transmission by (1) mosquito bite, or (2) by needle inoculation.Differential cytokine expression was measured using quantitative real-time RT-PCR, at sites of uninfected mosquito bites, CHIKV-infected mosquito bites, and needle-inoculated CHIKV. Both uninfected and CHIKV infected mosquitoes polarized host cytokine response to a TH2 profile. Compared to uninfected mosquito bites, expression of IL-4 induced by CHIKV-infected mosquitoes were 150 fold and 527.1 fold higher at 3 hours post feeding (hpf) and 6 hpf, respectively. A significant suppression of TH1 cytokines and TLR-3 was also observed. These significant differences may result from variation in the composition of uninfected and CHIKV-infected mosquito saliva. Needle injected CHIKV induced a robust interferon-gamma, no detectable IL-4, and a significant up-regulation of TLR-3.This report describes the first analysis of cutaneous cytokines in mice bitten by CHIKV-infected mosquitoes. Our data demonstrate contrasting immune activation in the response to CHIKV infection by mosquito bite or needle inoculation. The significant role of mosquito saliva in these earliest events of CHIKV transmission and infection are highlighted

    Interferon and Biologic Signatures in Dermatomyositis Skin: Specificity and Heterogeneity across Diseases

    Get PDF
    BACKGROUND: Dermatomyositis (DM) is an autoimmune disease that mainly affects the skin, muscle, and lung. The pathogenesis of skin inflammation in DM is not well understood. METHODOLOGY AND FINDINGS: We analyzed genome-wide expression data in DM skin and compared them to those from healthy controls. We observed a robust upregulation of interferon (IFN)-inducible genes in DM skin, as well as several other gene modules pertaining to inflammation, complement activation, and epidermal activation and differentiation. The interferon (IFN)-inducible genes within the DM signature were present not only in DM and lupus, but also cutaneous herpes simplex-2 infection and to a lesser degree, psoriasis. This IFN signature was absent or weakly present in atopic dermatitis, allergic contact dermatitis, acne vulgaris, systemic sclerosis, and localized scleroderma/morphea. We observed that the IFN signature in DM skin appears to be more closely related to type I than type II IFN based on in vitro IFN stimulation expression signatures. However, quantitation of IFN mRNAs in DM skin shows that the majority of known type I IFNs, as well as IFN g, are overexpressed in DM skin. In addition, both IFN-beta and IFN-gamma (but not other type I IFN) transcript levels were highly correlated with the degree of the in vivo IFN transcriptional response in DM skin. CONCLUSIONS AND SIGNIFICANCE: As in the blood and muscle, DM skin is characterized by an overwhelming presence of an IFN signature, although it is difficult to conclusively define this response as type I or type II. Understanding the significance of the IFN signature in this wide array of inflammatory diseases will be furthered by identification of the nature of the cells that both produce and respond to IFN, as well as which IFN subtype is biologically active in each diseased tissue

    Chikungunya virus adaptation to Aedes albopictus mosquitoes does not correlate with acquisition of cholesterol dependence or decreased pH threshold for fusion reaction

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Chikungunya virus (CHIKV) is a mosquito transmitted alphavirus that recently caused several large scale outbreaks/epidemics of arthritic disease in tropics of Africa, Indian Ocean basin and South-East Asia. This re-emergence event was facilitated by genetic adaptation (E1-A226V substitution) of CHIKV to a newly significant mosquito vector for this virus; <it>Aedes albopictus</it>. However, the molecular mechanism explaining the positive effect of the E1-A226V mutation on CHIKV fitness in this vector remains largely unknown. Previously we demonstrated that the E1-A226V substitution is also associated with attenuated CHIKV growth in cells depleted by cholesterol.</p> <p>Methods</p> <p>In this study, using a panel of CHIKV clones that varies in sensitivity to cholesterol, we investigated the possible relationship between cholesterol dependence and <it>Ae. albopictus </it>infectivity.</p> <p>Results</p> <p>We demonstrated that there is no clear mechanistic correlation between these two phenotypes. We also showed that the E1-A226V mutation increases the pH dependence of the CHIKV fusion reaction; however, subsequent genetic analysis failed to support an association between CHIKV dependency on lower pH, and mosquito infectivity phenotypes.</p> <p>Conclusion</p> <p>the E1-A226V mutation probably acts at different steps of the CHIKV life cycle, affecting multiple functions of the virus.</p

    Harvest: an open-source tool for the validation and improvement of peptide identification metrics and fragmentation exploration

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Protein identification using mass spectrometry is an important tool in many areas of the life sciences, and in proteomics research in particular. Increasing the number of proteins correctly identified is dependent on the ability to include new knowledge about the mass spectrometry fragmentation process, into computational algorithms designed to separate true matches of peptides to unidentified mass spectra from spurious matches. This discrimination is achieved by computing a function of the various features of the potential match between the observed and theoretical spectra to give a numerical approximation of their similarity. It is these underlying "metrics" that determine the ability of a protein identification package to maximise correct identifications while limiting false discovery rates. There is currently no software available specifically for the simple implementation and analysis of arbitrary novel metrics for peptide matching and for the exploration of fragmentation patterns for a given dataset.</p> <p>Results</p> <p>We present Harvest: an open source software tool for analysing fragmentation patterns and assessing the power of a new piece of information about the MS/MS fragmentation process to more clearly differentiate between correct and random peptide assignments. We demonstrate this functionality using data metrics derived from the properties of individual datasets in a peptide identification context. Using Harvest, we demonstrate how the development of such metrics may improve correct peptide assignment confidence in the context of a high-throughput proteomics experiment and characterise properties of peptide fragmentation.</p> <p>Conclusions</p> <p>Harvest provides a simple framework in C++ for analysing and prototyping metrics for peptide matching, the core of the protein identification problem. It is not a protein identification package and answers a different research question to packages such as Sequest, Mascot, X!Tandem, and other protein identification packages. It does not aim to maximise the number of assigned peptides from a set of unknown spectra, but instead provides a method by which researchers can explore fragmentation properties and assess the power of novel metrics for peptide matching in the context of a given experiment. Metrics developed using Harvest may then become candidates for later integration into protein identification packages.</p
    corecore