177 research outputs found
Microfabricated gas sensor systems with sensitive nanocrystalline metal-oxide films
This article gives an overview on recent developments in metal-oxide-based gas sensor systems, in particular on nanocrystalline oxide materials deposited on modern, state-of-the-art sensor platforms fabricated in microtechnology. First, metal-oxide-based gas sensors are introduced, and the underlying principles and fundamentals of the gas sensing process are laid out. In the second part, the different deposition methods, such as evaporation, sputtering, sol-gel techniques, aerosol methods, and screen-printing, and their applicability to micro-scale substrates are discussed in terms of their deposition precision, the achievable layer thickness, as well as with regard to the possibility to use pre-processed materials. In the third part, microsensor platforms and, in particular, semiconductor- and microelectronics-based sensor platforms, which have been fabricated in, e.g., standard CMOS-technology (CMOS: complementary metal-oxide semiconductor), are briefly reviewed. The use of such microfabricated sensor platforms inevitably imposes constraints, such as temperature limits, on the applied nanomaterial processing and deposition methods. These limitations are discussed and work-arounds are described. Additionally, monolithic sensor systems are presented that combine microtransducers or microhotplates, which are coated with nanomaterials, with the necessary control and driving electronics on a single chip. The most advanced of such systems are standalone units that can be directly connected to a computer via a digital interfac
Voices
Microfabricated and microfluidic devices enable standardized handling, precise spatiotemporal manipulation of cells and liquids, and recapitulation of cellular environments, tissues, and organ-level biology. We asked researchers how these devices can make in vitro experiments more physiologically relevant.Dissecting Biological Complexity / Lydia L. Sohn Improve Reproducibility! / Petra Schwille Enabling Physiological Conditions / Andreas Hierlemann Controlling Space and Time Organs-on-Chips Multicellular Microfluidics Beyond Just Shear Force
Recommended from our members
Reflectance Infrared Spectroscopy on Operating Surface Acoustic Wave Chemical Sensors During Exposure to Gas-Phase Analytes
We have developed instrumentation to enable the combination of surface acoustic wave (SAW) sensor measurements with direct, in-situ molecular spectroscopic measurements to understand the response of the SAW sensors with respect to the interfacial chemistry of surface-confined sensing films interacting with gas-phase analytes. Specifically, the instrumentation and software was developed to perform in-situ Fourier-transform infrared external-reflectance spectroscopy (FTIR-ERS) on operating SAW devices during dosing of their chemically modified surfaces with analytes. By probing the surface with IR spectroscopy during gas exposure, it is possible to understand in unprecedented detail the interaction processes between the sorptive SAW coatings and the gaseous analyte molecules. In this report, we provide details of this measurement system, and also demonstrate the utility of these combined measurements by characterizing the SAW and FTIR-ERS responses of organic thin-film sensor coatings interacting with gas-phase analytes
Ultrasensitive gold micro-structured electrodes enabling the detection of extra-cellular long-lasting potentials in astrocytes populations
Ultra-sensitive electrodes for extracellular recordings were fabricated and electrically characterized. A signal detection limit defined by a noise level of 0.3-0.4 mu V for a bandwidth of 12.5 Hz was achieved. To obtain this high sensitivity, large area (4 mm(2)) electrodes were used. The electrode surface is also micro-structured with an array of gold mushroom-like shapes to further enhance the active area. In comparison with a flat gold surface, the micro-structured surface increases the capacitance of the electrode/electrolyte interface by 54%. The electrode low impedance and low noise enable the detection of weak and low frequency quasi-periodic signals produced by astrocytes populations that thus far had remained inaccessible using conventional extracellular electrodes. Signals with 5 mu V in amplitude and lasting for 5-10 s were measured, with a peak-to-peak signal-to-noise ratio of 16. The electrodes and the methodology developed here can be used as an ultrasensitive electrophysiological tool to reveal the synchronization dynamics of ultra-slow ionic signalling between non-electrogenic cells.Portuguese Foundation for Science and Technology (FCT), through the project "Implantable organic devices for advanced therapies" (INNOVATE) [PTDC/EEI-AUT/5442/2014]; Instituto de Telecomunicacoes [UID/Multi/04326/2013]; Associated Laboratory - Institute of Nanoscience and Nanotechnology [POCI-01-0145-FEDER-016623]; [PTDC/CTM-NAN/3146/2014
Dendrimers in Nanoscale Confinement: The Interplay between Conformational Change and Nanopore Entrance
Hyperbranched dendrimers are nanocarriers for drugs, imaging agents, and catalysts. Their nanoscale confinement is of fundamental interest and occurs when dendrimers with bioactive payload block or pass biological nanochannels or when catalysts are entrapped in inorganic nanoporous support scaffolds. The molecular process of confinement and its effect on dendrimer conformations are, however, poorly understood. Here, we use single-molecule nanopore measurements and molecular dynamics simulations to establish an atomically detailed model of pore dendrimer interactions. We discover and explain that electrophoretic migration of polycationic PAMAM dendrimers into confined space is not dictated by the diameter of the branched molecules but by their size and generation-dependent compressibility. Differences in structural flexibility also rationalize the apparent anomaly that the experimental nanopore current read-out depends in nonlinear fashion on dendrimer size. Nanoscale confinement is inferred to reduce the protonation of the polycationic structures. Our model can likely be expanded to other dendrimers and be applied to improve the analysis of biophysical experiments, rationally design functional materials such as nanoporous filtration devices or nanoscale drug carriers that effectively pass biological pores
Unconventional Low-Cost Fabrication and Patterning Techniques for Point of Care Diagnostics
The potential of rapid, quantitative, and sensitive diagnosis has led to many innovative ‘lab on chip’ technologies for point of care diagnostic applications. Because these chips must be designed within strict cost constraints to be widely deployable, recent research in this area has produced extremely novel non-conventional micro- and nano-fabrication innovations. These advances can be leveraged for other biological assays as well, including for custom assay development and academic prototyping. The technologies reviewed here leverage extremely low-cost substrates and easily adoptable ways to pattern both structural and biological materials at high resolution in unprecedented ways. These new approaches offer the promise of more rapid prototyping with less investment in capital equipment as well as greater flexibility in design. Though still in their infancy, these technologies hold potential to improve upon the resolution, sensitivity, flexibility, and cost-savings over more traditional approaches
Deformability of poly(amidoamine) dendrimers
Experimental data indicates that poly(amidoamine) (PAMAM) dendrimers flatten when in contact with a substrate, i.e. they are no longer spherical, but resemble flat disks. In order to better understand the deformation behavior of these branched polymers, a series of atomistic molecular dynamics simulations is performed. The resulting flattened dendrimer conformations are compared to atomic force microscopy (AFM) images of individual dendrimers at air/mica and water/mica interfaces. The ability of the polymers to deform is investigated as a function of dendrimer generation (2-5) and the required energies are calculated. Our modeling results show good agreement with the experimental AFM images, namely that dendrimers are highly flexible and capable of forming multiple interaction sites between most of their branch ends and the substrate. The deformation energy scales with dendrimer generation and does not indicate an increase in stiffness between generations 2 and 5 due to steric effects.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/45831/1/10189_2003_Article_10087.pd
- …