17 research outputs found

    Doxorubicin-induced skeletal muscle atrophy:Elucidating the underlying molecular pathways

    Get PDF
    AIM: Loss of skeletal muscle mass is a common clinical finding in cancer patients. The purpose of this meta-analysis and systematic review was to quantify the effect of doxorubicin on skeletal muscle and report on the proposed molecular pathways possibly leading to doxorubicin-induced muscle atrophy in both human and animal models. METHODS: A systematic search of the literature was conducted in PubMed, EMBASE, Web of Science and CENTRAL databases. The internal validity of included studies was assessed using SYRCLE's risk of bias tool. RESULTS: Twenty eligible articles were identified. No human studies were identified as being eligible for inclusion. Doxorubicin significantly reduced skeletal muscle weight (ie EDL, TA, gastrocnemius and soleus) by 14% (95% CI: 9.9; 19.3) and muscle fibre cross-sectional area by 17% (95% CI: 9.0; 26.0) when compared to vehicle controls. Parallel to negative changes in muscle mass, muscle strength was even more decreased in response to doxorubicin administration. This review suggests that mitochondrial dysfunction plays a central role in doxorubicin-induced skeletal muscle atrophy. The increased production of ROS plays a key role within this process. Furthermore, doxorubicin activated all major proteolytic systems (ie calpains, the ubiquitin-proteasome pathway and autophagy) in the skeletal muscle. Although each of these proteolytic pathways contributes to doxorubicin-induced muscle atrophy, the activation of the ubiquitin-proteasome pathway is hypothesized to play a key role. Finally, a limited number of studies found that doxorubicin decreases protein synthesis by a disruption in the insulin signalling pathway. CONCLUSION: The results of the meta-analysis show that doxorubicin induces skeletal muscle atrophy in preclinical models. This effect may be explained by various interacting molecular pathways. Results from preclinical studies provide a robust setting to investigate a possible dose-response, separate the effects of doxorubicin from tumour-induced atrophy and to examine underlying molecular pathways. More research is needed to confirm the proposed signalling pathways in humans, paving the way for potential therapeutic approaches

    Circulating inflammatory biomarkers, adipokines and breast cancer risk—a case-control study nested within the EPIC cohort

    Get PDF
    Background Inflammation has been hypothesized to play a role in the development and progression of breast cancer and might differently impact breast cancer risk among pre and postmenopausal women. We performed a nested case-control study to examine whether pre-diagnostic circulating concentrations of adiponectin, leptin, c-reactive protein (CRP), tumour necrosis factor-alpha, interferon-gamma and 6 interleukins were associated with breast cancer risk, overall and by menopausal status. Methods Pre-diagnostic levels of inflammatory biomarkers were measured in plasma from 1558 case-control pairs from the European Prospective Investigation into Cancer and Nutrition (EPIC) cohort. We used conditional logistic regression to estimate the odds ratios (ORs) of breast cancer at blood collection, per one standard deviation increase in biomarker concentration. Results Cases were diagnosed at a mean age of 61.4 years on average 8.6 years after blood collection. No statistically significant association was observed between inflammatory markers and breast cancer risk overall. In premenopausal women, borderline significant inverse associations were observed for leptin, leptin-to-adiponectin ratio and CRP [OR= 0.89 (0.77-1.03), OR= 0.88 (0.76-1.01) and OR= 0.87 (0.75-1.01), respectively] while positive associations were observed among postmenopausal women [OR= 1.16 (1.05-1.29), OR= 1.11 (1.01-1.23), OR= 1.10 (0.99-1.22), respectively]. Adjustment for BMI strengthened the estimates in premenopausal women [leptin: OR = 0.83 (0.68-1.00), leptin-to-adiponectin ratio: OR = 0.80 (0.66-0.97), CRP: OR = 0.85 (0.72-1.00)] but attenuated the estimates in postmenopausal women [leptin: OR = 1.09 (0.96-1.24), leptin-to-adiponectin ratio: OR = 1.02 (0.89-1.16), CRP: OR = 1.04 (0.92-1.16)]. Conclusions Associations between CRP, leptin and leptin-to-adiponectin ratio with breast cancer risk may represent the dual effect of obesity by menopausal status although this deserves further investigation

    Dropout from exercise trials among cancer survivors—An individual patient data meta-analysis from the POLARIS study

    Get PDF
    Introduction: The number of randomized controlled trials (RCTs) investigating the effects of exercise among cancer survivors has increased in recent years; however, participants dropping out of the trials are rarely described. The objective of the present study was to assess which combinations of participant and exercise program characteristics were associated with dropout from the exercise arms of RCTs among cancer survivors. Methods: This study used data collected in the Predicting OptimaL cAncer RehabIlitation and Supportive care (POLARIS) study, an international database of RCTs investigating the effects of exercise among cancer survivors. Thirty-four exercise trials, with a total of 2467 patients without metastatic disease randomized to an exercise arm were included. Harmonized studies included a pre and a posttest, and participants were classified as dropouts when missing all assessments at the post-intervention test. Subgroups were identified with a conditional inference tree. Results: Overall, 9.6% of the participants dropped out. Five subgroups were identified in the conditional inference tree based on four significant associations with dropout. Most dropout was observed for participants with BMI &gt;28.4 kg/m2, performing supervised resistance or unsupervised mixed exercise (19.8% dropout) or had low-medium education and performed aerobic or supervised mixed exercise (13.5%). The lowest dropout was found for participants with BMI &gt;28.4 kg/m2 and high education performing aerobic or supervised mixed exercise (5.1%), and participants with BMI ≤28.4 kg/m2 exercising during (5.2%) or post (9.5%) treatment. Conclusions: There are several systematic differences between cancer survivors completing and dropping out from exercise trials, possibly affecting the external validity of exercise effects.</p

    Julius Symposium 2017 - Hiensch, AE

    No full text
    Data has been collected in the ‘Optimal Training for Women with Breast Cancer’ (OptiTrain) study, a randomized controlled exercise trial in which 240 women with breast cancer, undergoing adjuvant chemotherapy, have been included since 2013. The study is aimed at investigating the effects of two different exercise regimens on the primary outcome cancer-related fatigue and the secondary outcomes muscle strength, function and structure, cardiovascular fitness, systemic inflammation, skeletal muscle gene activity, health related quality of life, pain, disease and treatment-related symptoms. The current study assessed the Sense of Coherence of women with breast cancer participating in the OptiTrain study

    Stepping stones to implement exercise as integral part of cancer care

    No full text
    Exercise provides a myriad of health benefits to cancer survivors by reducing fatigue, anxiety and depressive symptoms, and improving physical fitness and quality of life. Although, international, evidence-based exercise guidelines exist for cancer survivors to improve cancer- and treatment related side effects, exercise programs have not yet been implemented as integral part of cancer care. As such, there is a growing need to bridge the gap between evidence and practice in order to increase engagement in physical activity among cancer survivors and make exercise referral the standard of cancer care. To promote implementation of exercise in daily clinical practice, the current knowledge should be expanded beyond the general effects of exercise in cancer survivors. The focus of this thesis is to expand our current knowledge. In part I, we aimed to identify relevant patient characteristics that might explain adherence to exercise guidelines and participation in exercise interventions. Insight into these characteristics enables us to optimize adherence to exercise guidelines and programs. In part II, we investigated the long-term effects of exercise in cancer survivors. Although exercise effects in cancer survivors have been investigated extensively, the long-term effects remain understudied. Furthermore, the majority of randomized controlled exercise trials is conducted in breast and prostate cancer survivors, hampering generalizability of results to understudied cancer populations. Therefore, we investigated the effects of exercise in patients with esophageal cancer. In part III, we expanded our current knowledge on mechanisms that underlie cancer- and treatment-induced side effects and the potential working mechanisms of exercise

    Neuro-immune interactions in paclitaxel-induced peripheral neuropathy

    No full text
    Background: Paclitaxel is a taxane-based chemotherapeutic agent used as a treatment in breast cancer. There is no effective prevention or treatment strategy for the most common side effect of peripheral neuropathy. In this manuscript, we reviewed the molecular mechanisms that contribute to paclitaxel-induced peripheral neuropathy (PIPN) with an emphasis on immune-related processes. Methods: A systematic search of the literature was conducted in PubMed, EMBASE and Cochrane Library. The SYRCLE’s risk of bias tool was used to assess internal validity. Results: 156 studies conducted with rodent models were included. The risk of bias was high due to unclear methodology. Paclitaxel induces changes in myelinated axons, mitochondrial dysfunction, and mechanical hypersensitivity by affecting ion channels expression and function and facilitating spinal transmission. Paclitaxel-induced inflammatory responses are important contributors to PIPN. Conclusion: Immune-related processes are an important mechanism contributing to PIPN. Studies in humans that validate these mechanistic data are highly needed to facilitate the development of therapeutic strategies

    Doxorubicin-induced skeletal muscle atrophy : elucidating the underlying molecular pathways

    No full text
    AIM: Loss of skeletal muscle mass is a common clinical finding in cancer patients. The purpose of this meta-analysis and systematic review was to quantify the effect of doxorubicin on skeletal muscle and report on the proposed molecular pathways possibly leading to doxorubicin-induced muscle atrophy in both human and animal models. METHODS: A systematic search of the literature was conducted in PubMed, EMBASE, Web of Science and CENTRAL databases. The internal validity of included studies was assessed using SYRCLE's risk of bias tool. RESULTS: Twenty eligible articles were identified. No human studies were identified as being eligible for inclusion. Doxorubicin significantly reduced skeletal muscle weight (ie EDL, TA, gastrocnemius and soleus) by 14% (95% CI: 9.9; 19.3) and muscle fibre cross-sectional area by 17% (95% CI: 9.0; 26.0) when compared to vehicle controls. Parallel to negative changes in muscle mass, muscle strength was even more decreased in response to doxorubicin administration. This review suggests that mitochondrial dysfunction plays a central role in doxorubicin-induced skeletal muscle atrophy. The increased production of ROS plays a key role within this process. Furthermore, doxorubicin activated all major proteolytic systems (ie calpains, the ubiquitin-proteasome pathway and autophagy) in the skeletal muscle. Although each of these proteolytic pathways contributes to doxorubicin-induced muscle atrophy, the activation of the ubiquitin-proteasome pathway is hypothesized to play a key role. Finally, a limited number of studies found that doxorubicin decreases protein synthesis by a disruption in the insulin signalling pathway. CONCLUSION: The results of the meta-analysis show that doxorubicin induces skeletal muscle atrophy in preclinical models. This effect may be explained by various interacting molecular pathways. Results from preclinical studies provide a robust setting to investigate a possible dose-response, separate the effects of doxorubicin from tumour-induced atrophy and to examine underlying molecular pathways. More research is needed to confirm the proposed signalling pathways in humans, paving the way for potential therapeutic approaches

    Four-year effects of exercise on fatigue and physical activity in patients with cancer

    No full text
    Background: In the earlier randomized controlled Physical Activity during Cancer Treatment (PACT) study, we found beneficial effects of an 18-week supervised exercise program on fatigue in patients with newly diagnosed breast or colon cancer undergoing adjuvant treatment. The present study assessed long-term effects of the exercise program on levels of fatigue and physical activity 4years after participation in the PACT study. Methods: The original study was a two-armed, multicenter randomized controlled trial comparing an 18-week supervised exercise program to usual care among 204 breast cancer patients and 33 colon cancer patients undergoing adjuvant treatment. Of the 237 PACT participants, 197 participants were eligible and approached to participate in the 4-year post-baseline measurements, and 128 patients responded. We assessed fatigue and physical activity levels at 4years post-baseline and compared this to levels at baseline, post-intervention (18weeks post-baseline), and at 36weeks post-baseline. Results: Intention-to-treat mixed linear effects model analyses showed that cancer patients in the intervention group reported significantly higher moderate-to-vigorous total physical activity levels (141.46min/week (95% confidence interval (CI) 1.31, 281.61, effect size (ES)=0.22) after 4years compared to the usual care group. Furthermore, cancer patients in the intervention group tended to experience less physical fatigue at 4years post-baseline compared to the usual care group (-1.13, 95% CI-2.45, 0.20, ES=0.22), although the result was not statistically significant. Conclusion: Patients with breast or colon cancer who participated in the 18-week exercise intervention showed significant higher levels of moderate-to-vigorous total physical activity levels and a tendency towards lower physical fatigue levels 4years post-baseline. Our result indicate that exercising during chemotherapy is a promising strategy for minimizing treatment-related side effects, both short and long term

    Four-year effects of exercise on fatigue and physical activity in patients with cancer

    No full text
    Abstract Background In the earlier randomized controlled Physical Activity during Cancer Treatment (PACT) study, we found beneficial effects of an 18-week supervised exercise program on fatigue in patients with newly diagnosed breast or colon cancer undergoing adjuvant treatment. The present study assessed long-term effects of the exercise program on levels of fatigue and physical activity 4 years after participation in the PACT study. Methods The original study was a two-armed, multicenter randomized controlled trial comparing an 18-week supervised exercise program to usual care among 204 breast cancer patients and 33 colon cancer patients undergoing adjuvant treatment. Of the 237 PACT participants, 197 participants were eligible and approached to participate in the 4-year post-baseline measurements, and 128 patients responded. We assessed fatigue and physical activity levels at 4 years post-baseline and compared this to levels at baseline, post-intervention (18 weeks post-baseline), and at 36 weeks post-baseline. Results Intention-to-treat mixed linear effects model analyses showed that cancer patients in the intervention group reported significantly higher moderate-to-vigorous total physical activity levels (141.46 min/week (95% confidence interval (CI) 1.31, 281.61, effect size (ES) = 0.22) after 4 years compared to the usual care group. Furthermore, cancer patients in the intervention group tended to experience less physical fatigue at 4 years post-baseline compared to the usual care group (− 1.13, 95% CI –2.45, 0.20, ES = 0.22), although the result was not statistically significant. Conclusion Patients with breast or colon cancer who participated in the 18-week exercise intervention showed significant higher levels of moderate-to-vigorous total physical activity levels and a tendency towards lower physical fatigue levels 4 years post-baseline. Our result indicate that exercising during chemotherapy is a promising strategy for minimizing treatment-related side effects, both short and long term. Trial registration Current Controlled Trials ISRCTN43801571, Dutch Trial Register NTR2138. Trial registered on 9 December 2009
    corecore