65 research outputs found
Interplay between edge states and simple bulk defects in graphene nanoribbons
We study the interplay between the edge states and a single impurity in a
zigzag graphene nanoribbon. We use tight-binding exact diagonalization
techniques, as well as density functional theory calculations to obtain the
eigenvalue spectrum, the eigenfunctions, as well the dependence of the local
density of states (LDOS) on energy and position. We note that roughly half of
the unperturbed eigenstates in the spectrum of the finite-size ribbon hybridize
with the impurity state, and the corresponding eigenvalues are shifted with
respect to their unperturbed values. The maximum shift and hybridization occur
for a state whose energy is inverse proportional to the impurity potential;
this energy is that of the impurity peak in the DOS spectrum. We find that the
interference between the impurity and the edge gives rise to peculiar
modifications of the LDOS of the nanoribbon, in particular to oscillations of
the edge LDOS. These effects depend on the size of the system, and decay with
the distance between the edge and the impurity.Comment: 10 pages, 15 figures, revtex
DIGITAL WORKFLOWS FOR A 3D SEMANTIC REPRESENTATION OF AN ANCIENT MINING LANDSCAPE
The ancient mining landscape of Schwaz/Brixlegg in the Tyrol, Austria witnessed mining from prehistoric times to modern times creating a first order cultural landscape when it comes to one of the most important inventions in human history: the production of metal. In 1991 a part of this landscape was lost due to an enormous landslide that reshaped part of the mountain. With our work we want to propose a digital workflow to create a 3D semantic representation of this ancient mining landscape with its mining structures to preserve it for posterity. First, we define a conceptual model to integrate the data. It is based on the CIDOC CRM ontology and CRMgeo for geometric data. To transform our information sources to a formal representation of the classes and properties of the ontology we applied semantic web technologies and created a knowledge graph in RDF (Resource Description Framework). Through the CRMgeo extension coordinate information of mining features can be integrated into the RDF graph and thus related to the detailed digital elevation model that may be visualized together with the mining structures using Geoinformation systems or 3D visualization tools. The RDF network of the triple store can be queried using the SPARQL query language. We created a snapshot of mining, settlement and burial sites in the Bronze Age. The results of the query were loaded into a Geoinformation system and a visualization of known bronze age sites related to mining, settlement and burial activities was created
3-vinyl-1,2,4-triazine as platform for conjugate addition/hetero-Diels-Alder/retro-Diels-Alder cascade reaction
National audienc
The magnetic shielding for the neutron decay spectrometer aSPECT
Many experiments in nuclear and neutron physics are confronted with the problem that they use a superconducting magnetic spectrometer which potentially affects other experiments by their stray magnetic field. The retardation spectrometer aSPECT consists, inter alia, of a superconducting magnet system that produces a strong longitudinal magnetic field of up to 6.2 T. In order not to disturb other experiments in the vicinity of aSPECT, we had to develop a magnetic field return yoke for the magnet system. While the return yoke must reduce the stray magnetic field, the internal magnetic field and its homogeneity should not be affected. As in many cases, the magnetic shielding for aSPECT must manage with limited space. In addition, we must ensure that the additional magnetic forces on the magnet coils are not destructive. In order to determine the most suitable geometry for the magnetic shielding for aSPECT, we simulated a variety of possible geometries and combinations of shielding materials of non-linear permeability. The results of our simulations were checked through magnetic field measurements both with Hall and nuclear magnetic resonance probes. The experimental data are in good agreement with the simulated values: The mean deviation from the simulated exterior magnetic field is (−1.7 ± 4.8) %. However, in the two critical regions, the internal magnetic field deviates by 0.2 % respectively < 1 × 10−4 from the simulated values
- …