50 research outputs found

    Calibration of an agent-based simulation model to the data of women infected by Human Papillomavirus with uncertainty

    Full text link
    [EN] Recently, the transmission dynamics of the Human Papillomavirus (HPV) has been studied. In previous works, we have designed and implemented a computational model (agent-based simulation model) where the contagion of the HPV is described on a network of lifetime sexual partners. The run of a single simulation of this computational model, composed of a network with 500 000 nodes, takes about one hour and a half. In addition to set an adequate model, finding out the model parameters that best fit the proposed model to the available data of prevalence is a crucial goal. Taking into account that the necessary number of simulations to perform the calibration of the model may be very high, the aforementioned goal may become unaffordable. In this paper, we present a procedure to fit the proposed HPV model to the available data and the design of an asynchronous version of the Particle Swarm Optimization (PSO) algorithm adapted to the distributed computing environment. In the process, the number of particles used in PSO should be set carefully looking for a compromise between quality of the solutions and computation time. Another feature of the procedure presented here is that we want to capture the intrinsic uncertainty in the data (data come from a survey) when calibrating the model. To do so, we also propose the design of an algorithm to select the model parameter sets obtained during the calibration that best capture the data uncertainty.This work has been supported by the Spanish Ministerio de Economia y Competitividad grants MTM2017-89664-P, TIN2014-54806-R and RTI2018-095180-B-I00, Grants Y2018/NMT-4668 (Micro-Stres-MAP-CM) and GenObIA-CM (S2017/BMD-3773) financed by the Community of Madrid, Spain and co-financed with EU Structural Funds, Spain, and by GLENO project financed by Fundacion Eugenio Rodriguez Pascual, Spain.Villanueva Micó, RJ.; Hidalgo, J.; Cervigon, C.; Villanueva-Oller, J.; Cortés, J. (2019). Calibration of an agent-based simulation model to the data of women infected by Human Papillomavirus with uncertainty. Applied Soft Computing. 80:546-556. https://doi.org/10.1016/j.asoc.2019.04.015S5465568

    Swarm hybrid optimization for a piecewise model fitting applied to a glucose model

    Full text link
    [EN] Purpose ¿ The purpose of this paper is to study insulin pump therapy and accurate monitoring of glucose levels in diabetic patients, which are current research trends in diabetology. Both problems have a wide margin for improvement and promising applications in the control of parameters and levels involved. Design/methodology/approach ¿ The authors have registered data for the levels of glucose in diabetic patients throughout a day with a temporal resolution of 5 minutes, the amount and time of insulin administered and time of ingestion. The estimated quantity of carbohydrates is also monitored. A mathematical model for Type 1 patients was fitted piecewise to these data and the evolution of the parameters was analyzed. Findings ¿ They have found that the parameters for the model change abruptly throughout a day for the same patient, but this set of parameters account with precision for the evolution of the glucose levels in the test patients. This fitting technique could be used to personalize treatments for specific patients and predict the glucose-level variations in terms of hours or even shorter periods of time. This way more effective insulin pump therapies could be developed. Originality/value ¿ The proposed model could allow for the development of improved schedules on insulin pump therapiesAcedo Rodríguez, L.; Botella, M.; Cortés, J.; Hidalgo, J.; Maqueda, E.; Villanueva Micó, RJ. (2018). Swarm hybrid optimization for a piecewise model fitting applied to a glucose model. Journal of Systems and Information Technology. 20(4):9618-9627. https://doi.org/10.1108/JSIT-10-2017-0103S9618962720

    Study of Microscopic Residual Stresses in an Extruded Aluminium Alloy Sample after Thermal Treatment

    Get PDF
    Abstract: A method is proposed to calculate the microscopic residual stresses in extruded cylindrical samples of non-ageing aluminium alloy 5083 (Al–Mg), arising from quenching in fresh water from 530°C. We start from the premise that the alloy is single-phase and non-isotropic on a microscopic scale; it consists of many grains that exhibit different mechanical response depending on their crystallographic orientation and neighboring grains. Microscopic residual stresses depend on the applied heat treatment, microstructure and mechanical strength of the individual grains. The stresses were calculated from neutron diffraction data. Genetic programming algorithms were used to calculate microscopic residual stresses, considering that each diffraction peak describes the stress distribution of a group of grains having a certain orientation, size and environment. The algorithm assigns a stress value to each grain according to the distribution of the diffraction peaks and the microstructural parameters of these grains.This work was supported by the Madrid Regional Government-FEDER grant Y2018/NMT-4668 (Micro-Stress-MAP-CM) and the project MAT2017-83825-C4-1-R. We would also like to express our gratitude to FLNR-JINP for the beam time allocated on the FSD instrument, and to the HeuristicLab Software developers

    Motion of a sphere in a viscous fluid towards a wall confined versus unconfined conditions

    Get PDF
    In the present work, we investigate experimentally and numerically the motion of solid macroscopic spheres (Brownian and colloidal effects are negligible) when settling from rest in a quiescent fluid toward a solid wall under confined and unconfined configurations. Particle trajectories for spheres of two types of materials are measured using a high-speed digital camera. For unconfined configurations, our experimental findings are in excellent agreement with well-established analytical frameworks, used to describe the forces acting on the sphere. Besides, the experimental values of the terminal velocity obtained for different confinements are also in very good agreement with previous theoretical formulations. Similar conditions are simulated using a resolved CFD-DEM approach. After adjusting the parameters of the numerical model, we analyze the particle dynamic under several confinement conditions. The simulations results are contrasted with the experimental findings, obtaining a good agreement. We analyze several systems varying the radius of the bead and show the excellent agreement of our results with previous analytical approaches. However, the results indicate that confined particles have a distinct dynamics response when approaching the wall. Consequently, their motion cannot be described by the analytical framework introduced for the infinite system. Indeed, the confinement strongly affects the spatial scale where the particle is affected by the bottom wall and, accordingly, the dimensionless results can not be collapsed in a single master curve, using the particle size as a characteristic length. Alternatively, we rationalize our findings using a kinematic approximation to highlight the relevant scale of the problem. Our outcomes suggest it is possible to determine a new spatial scale to describe the collisional process, depending on the specific confining conditions

    Reducción de los requerimientos de hemoderivados en el trasplante hepático con aprotinina

    Get PDF
    Prophylactic use of aprotinin during surgery has a beneficial effect on hemostatic mechanisms, reducing the need for blood products. A reduction in fibrinolysis seems to contribute to this effect

    Whole-exome sequence analysis of anthropometric traits illustrates challenges in identifying effects of rare genetic variants

    Get PDF
    Anthropometric traits, measuring body size and shape, are highly heritable and significant clinical risk factors for cardiometabolic disorders. These traits have been extensively studied in genome-wide association studies (GWASs), with hundreds of genome-wide significant loci identified. We performed a whole-exome sequence analysis of the genetics of height, body mass index (BMI) and waist/hip ratio (WHR). We meta-analyzed single-variant and gene-based associations of whole-exome sequence variation with height, BMI, and WHR in up to 22,004 individuals, and we assessed replication of our findings in up to 16,418 individuals from 10 independent cohorts from Trans-Omics for Precision Medicine (TOPMed). We identified four trait associations with single-nucleotide variants (SNVs; two for height and two for BMI) and replicated the LECT2 gene association with height. Our expression quantitative trait locus (eQTL) analysis within previously reported GWAS loci implicated CEP63 and RFT1 as potential functional genes for known height loci. We further assessed enrichment of SNVs, which were monogenic or syndromic variants within loci associated with our three traits. This led to the significant enrichment results for height, whereas we observed no Bonferroni-corrected significance for all SNVs. With a sample size of ∼20,000 whole-exome sequences in our discovery dataset, our findings demonstrate the importance of genomic sequencing in genetic association studies, yet they also illustrate the challenges in identifying effects of rare genetic variants

    Use of >100,000 NHLBI Trans-Omics for Precision Medicine (TOPMed) Consortium whole genome sequences improves imputation quality and detection of rare variant associations in admixed African and Hispanic/Latino populations

    Get PDF
    Most genome-wide association and fine-mapping studies to date have been conducted in individuals of European descent, and genetic studies of populations of Hispanic/Latino and African ancestry are limited. In addition, these populations have more complex linkage disequilibrium structure. In order to better define the genetic architecture of these understudied populations, we leveraged >100,000 phased sequences available from deep-coverage whole genome sequencing through the multi-ethnic NHLBI Trans-Omics for Precision Medicine (TOPMed) program to impute genotypes into admixed African and Hispanic/Latino samples with genome-wide genotyping array data. We demonstrated that using TOPMed sequencing data as the imputation reference panel improves genotype imputation quality in these populations, which subsequently enhanced gene-mapping power for complex traits. For rare variants with minor allele frequency (MAF) 86%. Subsequent association analyses of TOPMed reference panel-imputed genotype data with hematological traits (hemoglobin (HGB), hematocrit (HCT), and white blood cell count (WBC)) in ~21,600 African-ancestry and ~21,700 Hispanic/Latino individuals identified associations with two rare variants in the HBB gene (rs33930165 with higher WBC [p = 8.8x10-15] in African populations, rs11549407 with lower HGB [p = 1.5x10-12] and HCT [p = 8.8x10-10] in Hispanics/Latinos). By comparison, neither variant would have been genome-wide significant if either 1000 Genomes Project Phase 3 or Haplotype Reference Consortium reference panels had been used for imputation. Our findings highlight the utility of the TOPMed imputation reference panel for identification of novel rare variant associations not previously detected in similarly sized genome-wide studies of under-represented African and Hispanic/Latino populations

    Whole genome sequence association analysis of fasting glucose and fasting insulin levels in diverse cohorts from the NHLBI TOPMed program

    Get PDF
    The genetic determinants of fasting glucose (FG) and fasting insulin (FI) have been studied mostly through genome arrays, resulting in over 100 associated variants. We extended this work with high-coverage whole genome sequencing analyses from fifteen cohorts in NHLBI’s Trans-Omics for Precision Medicine (TOPMed) program. Over 23,000 non-diabetic individuals from five race-ethnicities/populations (African, Asian, European, Hispanic and Samoan) were included. Eight variants were significantly associated with FG or FI across previously identified regions MTNR1B, G6PC2, GCK, GCKR and FOXA2. We additionally characterize suggestive associations with FG or FI near previously identified SLC30A8, TCF7L2, and ADCY5 regions as well as APOB, PTPRT, and ROBO1. Functional annotation resources including the Diabetes Epigenome Atlas were compiled for each signal (chromatin states, annotation principal components, and others) to elucidate variant-to-function hypotheses. We provide a catalog of nucleotide-resolution genomic variation spanning intergenic and intronic regions creating a foundation for future sequencing-based investigations of glycemic traits

    An integrative cross-omics analysis of DNA methylation sites of glucose and insulin homeostasis

    Get PDF
    Despite existing reports on differential DNA methylation in type 2 diabetes (T2D) and obesity, our understanding of its functional relevance remains limited. Here we show the effect of differential methylation in the early phases of T2D pathology by a blood-based epigenome-wide association study of 4808 non-diabetic Europeans in the discovery phase and 11,750 individuals in the replication. We identify CpGs in LETM1, RBM20, IRS2, MAN2A2 and the 1q25.3 region associated with fasting insulin, and in FCRL6, SLAMF1, APOBEC3H and the 15q26.1 region with fasting glucose. In silico cross-omics analyses highlight the role of differential methylation in the crosstalk between the adaptive immune system and glucose homeostasis. The differential methylation explains at least 16.9% of the association between obesity and insulin. Our study sheds light on the biological interactions between genetic variants driving differential methylation and gene expression in the early pathogenesis of T2D
    corecore