260 research outputs found

    Facet ridge end points in crystal shapes

    Full text link
    Equilibrium crystal shapes (ECS) near facet ridge end points (FRE) are generically complex. We study the body-centered solid-on-solid model on a square lattice with an enhanced uniaxial interaction range to test the stability of the so-called stochastic FRE point where the model maps exactly onto one dimensional Kardar-Parisi-Zhang type growth and the local ECS is simple. The latter is unstable. The generic ECS contains first-order ridges extending into the rounded part of the ECS, where two rough orientations coexist and first-order faceted to rough boundaries terminating in Pokrovsky-Talapov type end points.Comment: Contains 4 pages, 5 eps figures. Uses RevTe

    Stereochemical course of the hydrolysis reaction catalyzed by chitinases Al and D from Bacillus circulans WL-12

    Get PDF
    AbstractChitinases A1 and D were purified from the periplasmic proteins produced by Escherichia coli HB101 harbouring recombinant plasmids carrying respectively the chiA and chiD genes of Bacillus circulans WL-12. HPLC analysis indicated that during the hydrolysis of chitotriose, both chitinases initially produce N-acetylglucosamine and only one anomer of chitobiose. 1H NMR spectroscopy of the hydrolysis of chitotetraitol showed that this anomer corresponds to β-chitobiose, demonstrating that chitinases Al and D act by a molecular mechanism that retains the anomeric configuration. This mechanism is similar to that of lysozymes although both chitinases belong to a family of proteins sharing no demonstrable amino acid sequence similarity with lysozymes

    The phase diagram of the lattice Calogero-Sutherland model

    Full text link
    We introduce a {\it lattice} version of the Calogero Sutherland model adapted to describe 1/d21/d^2 pairwise interacting steps with discrete positions on a vicinal surface. The configurational free energy is obtained within a transfer matrix method. The full phase diagram for attractive and for repulsive interaction is deduced. For attraction, critical temperatures of faceting transitions are found to depend on step density.Comment: latex PRBCalogSuth.tex, 6 files, 4 pages [SPEC-S00/900

    Equilibrium crystal shapes in the Potts model

    Full text link
    The three-dimensional qq-state Potts model, forced into coexistence by fixing the density of one state, is studied for q=2q=2, 3, 4, and 6. As a function of temperature and number of states, we studied the resulting equilibrium droplet shapes. A theoretical discussion is given of the interface properties at large values of qq. We found a roughening transition for each of the numbers of states we studied, at temperatures that decrease with increasing qq, but increase when measured as a fraction of the melting temperature. We also found equilibrium shapes closely approaching a sphere near the melting point, even though the three-dimensional Potts model with three or more states does not have a phase transition with a diverging length scale at the melting point.Comment: 6 pages, 3 figures, submitted to PR

    Equilibrium shapes and faceting for ionic crystals of body-centered-cubic type

    Full text link
    A mean field theory is developed for the calculation of the surface free energy of the staggered BCSOS, (or six vertex) model as function of the surface orientation and of temperature. The model approximately describes surfaces of crystals with nearest neighbor attractions and next nearest neighbor repulsions. The mean field free energy is calculated by expressing the model in terms of interacting directed walks on a lattice. The resulting equilibrium shape is very rich with facet boundaries and boundaries between reconstructed and unreconstructed regions which can be either sharp (first order) or smooth (continuous). In addition there are tricritical points where a smooth boundary changes into a sharp one and triple points where three sharp boundaries meet. Finally our numerical results strongly suggest the existence of conical points, at which tangent planes of a finite range of orientations all intersect each other. The thermal evolution of the equilibrium shape in this model shows strong similarity to that seen experimentally for ionic crystals.Comment: 14 Pages, Revtex and 10 PostScript figures include

    Phase Separation of Crystal Surfaces: A Lattice Gas Approach

    Full text link
    We consider both equilibrium and kinetic aspects of the phase separation (``thermal faceting") of thermodynamically unstable crystal surfaces into a hill--valley structure. The model we study is an Ising lattice gas for a simple cubic crystal with nearest--neighbor attractive interactions and weak next--nearest--neighbor repulsive interactions. It is likely applicable to alkali halides with the sodium chloride structure. Emphasis is placed on the fact that the equilibrium crystal shape can be interpreted as a phase diagram and that the details of its structure tell us into which surface orientations an unstable surface will decompose. We find that, depending on the temperature and growth conditions, a number of interesting behaviors are expected. For a crystal in equilibrium with its vapor, these include a low temperature regime with logarithmically--slow separation into three symmetrically--equivalent facets, and a higher temperature regime where separation proceeds as a power law in time into an entire one--parameter family of surface orientations. For a crystal slightly out of equilibrium with its vapor (slow crystal growth or etching), power--law growth should be the rule at late enough times. However, in the low temperature regime, the rate of separation rapidly decreases as the chemical potential difference between crystal and vapor phases goes to zero.Comment: 16 pages (RevTex 3.0); 12 postscript figures available on request ([email protected]). Submitted to Physical Review E. SFU-JDSDJB-94-0

    Noncrystalline structures of ultrathin unsupported nanowires

    Get PDF
    Computer simulations suggest that ultrathin metal wires should develop exotic, non-crystalline stable atomic structures, once their diameter decreases below a critical size of the order of a few atomic spacings. The new structures, whose details depend upon the material and the wire thickness, may be dominated by icosahedral packings. Helical, spiral-structured wires with multi-atom pitches are also predicted. The phenomenon, analogous to the appearance of icosahedral and other non-crystalline shapes in small clusters, can be rationalized in terms of surface energy anisotropy and optimal packing

    Growth mode, magnetic and magneto-optical properties of pulsed-laser-deposited Au/Co/Au(111) trilayers

    Get PDF
    The growth mode, magnetic and magneto-optical properties of epitaxial Au/Co/Au(111) ultrathin trilayers grown by pulsed-laser deposition (PLD) under ultra-high vacuum are presented. Sapphire wafers buffered with a single-crystalline Mo(110) bilayer were used as substrates. Owing to PLD-induced interfacial intermixing at the lower Co/Au(111) interface, a layer-by-layer growth mode is promoted. Surprisingly, despite this intermixing, ferromagnetic behavior is found at room temperature for coverings starting at 1 atomic layer (AL). The films display perpendicular magnetization with anisotropy constants reduced by 50% compared to TD-grown or electrodeposited films, and with a coercivity more than one order of magnitude lower (\lesssim 5 mT). The magneto-optical (MO) response in the low Co thickness range is dominated by Au/Co interface contributions. For thicknesses starting at 3 AL Co, the MO response has a linear dependence with the Co thickness, indicative of a continuous-film-like MO behavior

    Transition metals on the (0001) surface of graphite: Fundamental aspects of adsorption, diffusion, and morphology

    Get PDF
    In this article, we review basic information about the interaction of transition metal atoms with the (0001) surface of graphite, especially fundamental phenomena related to growth. Those phenomena involve adatom-surface bonding, diffusion, morphology of metal clusters, interactions with steps and sputter-induced defects, condensation, and desorption. General traits emerge which have not been summarized previously. Some of these features are rather surprising when compared with metal-on-metal adsorption and growth. Opportunities for future work are pointed out
    corecore