125 research outputs found

    Near-field BLEVE overpressure effects: The shock start model

    Get PDF
    International audienceThis paper presents the results of a small scale experimental study of BLEVE overpressure effects. Testing consisted of a sealed aluminum tube (0.6 L) filled with either water or propane, being heated by a flame until the internal pressure led to catastrophic failure and explosion. Three parameters were controlled during the experiments: the failing pressure, the weakened length on the tube and the fill level. BLEVEs were obtained with tests involving water and propane. Blast gages and optical techniques were used to characterize the shock wave escaping from the failing tube. The results obtained suggest that the lead shock was primarily generated by the vapor space. Overpressure results obtained were compared with the predictions of existing models and found to be in reasonable agreement except for overpressures measured vertically above the cylinder where the overpressures were highest. A prediction model based on only vapor space characteristics was developed. Images show that the shock was fully formed at some distance away from the vessel opening and this was due to the non-ideal opening of the vessel. The model developed was based on the characteristics of the shock when fully formed away from the tube. These characteristics were defined using a combination of imaging, pressure measurements, and predictions from shock tube theory

    Involvement of Ī²3-Adrenoceptor in Altered Ī²-Adrenergic Response in Senescent Heart: Role of Nitric Oxide Synthase 1ā€“derived Nitric Oxide

    Get PDF
    Background: In senescent heart, Ī²-adrenergic response is altered in parallel with Ī²1- and Ī²2-adrenoceptor down-regulation. A negative inotropic effect of Ī²3-adrenoceptor could be involved. In this study, the authors tested the hypothesis that Ī²3-adrenoceptor plays a role in Ī²-adrenergic dysfunction in senescent heart.Methods: Ī²-Adrenergic responses were investigated in vivo (echocardiographyā€“dobutamine, electron paramagnetic resonance) and in vitro (isolated left ventricular papillary muscle, electron paramagnetic resonance) in young adult (3-month-old) and senescent (24-month-old) rats. Nitric oxide synthase (NOS) immunolabeling (confocal microscopy), nitric oxide production (electron paramagnetic resonance) and Ī²-adrenoceptor Western blots were performed in vitro. Data are mean percentages of baseline Ā± SD. Results: An impaired positive inotropic effect (isoproterenol) was confirmed in senescent hearts in vivo (117 Ā± 23 vs. 162 Ā± 16%; P < 0.05) and in vitro (127 Ā± 10 vs. 179 Ā± 15%; P < 0.05). In the young adult group, the positive inotropic effect was not significantly modified by the nonselective NOS inhibitor NG-nitro-l-arginine methylester (l-NAME; 183 Ā± 19%), the selective NOS1 inhibitor vinyl-l-N-5(1-imino-3-butenyl)-l-ornithine (l-VNIO; 172 Ā± 13%), or the selective NOS2 inhibitor 1400W (183 Ā± 19%). In the senescent group, in parallel with Ī²3-adrenoceptor up-regulation and increased nitric oxide production, the positive inotropic effect was partially restored by l-NAME (151 Ā± 8%; P < 0.05) and l-VNIO (149 Ā± 7%; P < 0.05) but not by 1400W (132 Ā± 11%; not significant). The positive inotropic effect induced by dibutyryl-cyclic adenosine monophosphate was decreased in the senescent group with the specific Ī²3-adrenoceptor agonist BRL 37344 (167 Ā± 10 vs. 142 Ā± 10%; P < 0.05). NOS1 and NOS2 were significantly up-regulated in the senescent rat. Conclusions: In senescent cardiomyopathy, Ī²3-adrenoceptor overexpression plays an important role in the altered Ī²-adrenergic response via induction of NOS1-nitric oxide

    Phosphatidylinositol 3-Kinase and Xanthine Oxidase Regulate Nitric Oxide and Reactive Oxygen Species Productions by Apoptotic Lymphocyte Microparticles in Endothelial Cells

    Get PDF
    Microparticles (MPs) are membrane vesicles released during cell activation and apoptosis. We have previously shown that MPs from apoptotic T cells induce endothelial dysfunction, but the mechanisms implicated are not completely elucidated. In this study, we dissect the pathways involved in endothelial cells with respect to both NO and reactive oxygen species (ROS). Incubation of endothelial cells with MPs decreased NO production that was associated with overexpression and phosphorylation of endothelial NO synthase (eNOS). Also, MPs enhanced expression of caveolin-1 and decreased its phosphorylation. Microparticles enhanced ROS by a mechanism sensitive to xanthine oxidase and P-IĪŗBĪ± inhibitors. PI3K inhibition reduced the effects of MPs on eNOS, but not on caveolin-1, whereas it enhanced the effects of MPs on ROS production. Microparticles stimulated ERK1/2 phosphorylation via a PI3K-depedent mechanism. Inhibition of MEK reversed eNOS phosphorylation but had no effect on ROS production induced by MPs. In vivo injection of MPs in mice impaired endothelial function. In summary, MPs activate pathways related to NO and ROS productions through PI3K, xanthine oxidase, and NF-ĪŗB pathways. These data underscore the pleiotropic effects of MPs on NO and ROS, leading to an increase oxidative stress that may account for the deleterious effects of MPs on endothelial function

    Molecular phenomics and metagenomics of hepatic steatosis in non-diabetic obese women

    Get PDF
    The role of molecular signals from the microbiome and their coordinated interactions with those from the host in hepatic steatosis ā€“ notably in obese patients and as risk factors for insulin resistance and atherosclerosis ā€“ needs to be understood. We reveal molecular networks linking gut microbiome and host phenome to hepatic steatosis in a cohort of non diabetic obese women. Steatotic patients had low microbial gene richness and increased genetic potential for processing of dietary lipids and endotoxin biosynthesis (notably from Proteobacteria), hepatic inflammation and dysregulation of aromatic and branched-chain amino acid (AAA and BCAA) metabolism. We demonstrated that faecal microbiota transplants and chronic treatment with phenylacetic acid (PAA), a microbial product of AAA metabolism, successfully trigger steatosis and BCAA metabolism. Molecular phenomic signatures were predictive (AUC = 87%) and consistent with the gut microbiome making an impact on the steatosis phenome (>75% shared variation) and, therefore, actionable via microbiome-based therapies

    3ā€²,4ā€²-Dihydroxyflavonol Antioxidant Attenuates Diastolic Dysfunction and Cardiac Remodeling in Streptozotocin-Induced Diabetic m(Ren2)27 Rats

    Get PDF
    Diabetic cardiomyopathy (DCM) is an increasingly recognized cause of chronic heart failure amongst diabetic patients. Both increased reactive oxygen species (ROS) generation and impaired ROS scavenging have been implicated in the pathogenesis of hyperglycemia-induced left ventricular dysfunction, cardiac fibrosis, apoptosis and hypertrophy. We hypothesized that 3',4'-dihydroxyflavonol (DiOHF), a small highly lipid soluble synthetic flavonol, may prevent DCM by scavenging ROS, thus preventing ROS-induced cardiac damage.Six week old homozygous Ren-2 rats were randomized to receive either streptozotocin or citrate buffer, then further randomized to receive either DiOHF (1 mg/kg/day) by oral gavage or vehicle for six weeks. Cardiac function was assessed via echocardiography and left ventricular cardiac catheterization before the animals were sacrificed and hearts removed for histological and molecular analyses. Diabetic Ren-2 rats showed evidence of diastolic dysfunction with prolonged deceleration time, reduced E/A ratio, and increased slope of end-diastolic pressure volume relationship (EDPVR) in association with marked interstitial fibrosis and oxidative stress (all P<0.05 vs control Ren-2). Treatment with DiOHF prevented the development of diastolic dysfunction and was associated with reduced oxidative stress and interstitial fibrosis (all P<0.05 vs untreated diabetic Ren-2 rats). In contrast, few changes were seen in non-diabetic treated animals compared to untreated counterparts.Inhibition of ROS production and action by DiOHF improved diastolic function and reduced myocyte hypertrophy as well as collagen deposition. These findings suggest the potential clinical utility of antioxidative compounds such as flavonols in the prevention of diabetes-associated cardiac dysfunction

    Animal models of cardiorenal syndrome: a review

    Get PDF
    The incidence of heart failure and renal failure is increasing and is associated with poor prognosis. Moreover, these conditions do often coexist and this coexistence results in worsened outcome. Various mechanisms have been proposed as an explanation of this interrelation, including changes in hemodynamics, endothelial dysfunction, inflammation, activation of renin-angiotensin-aldosterone system, and/or sympathetic nervous system. However, the exact mechanisms initializing and maintaining this interaction are still unknown. In many experimental studies on cardiac or renal dysfunction, the function of the other organ was either not addressed or the authors failed to show any decline in its function despite histological changes. There are few studies in which the dysfunction of both heart and kidney function has been described. In this review, we discuss animal models of combined cardiorenal dysfunction. We show that translation of the results from animal studies is limited, and there is a need for new and better models of the cardiorenal interaction to improve our understanding of this syndrome. Finally, we propose several requirements that a new animal model should meet to serve as a tool for studies on the cardiorenal syndrome

    Alterations in vasomotor control of coronary resistance vessels in remodelled myocardium of swine with a recent myocardial infarction

    Get PDF
    The mechanism underlying the progressive deterioration of left ventricular (LV) dysfunction after myocardial infarction (MI) towards overt heart failure remains incompletely understood, but may involve impairments in coronary blood flow regulation within remodelled myocardium leading to intermittent myocardial ischemia. Blood flow to the remodelled myocardium is hampered as the coronary vasculature does not grow commensurate with the increase in LV mass and because extravascular compression of the coronary vasculature is increased. In addition to these factors, an increase in coronary vasomotor tone, secondary to neurohumoral activation and endothelial dysfunction, could also contribute to the impaired myocardial oxygen supply. Consequently, we explored, in a series of studies, the alterations in regulation of coronary resistance vessel tone in remodelled myocardium of swine with a 2 to 3-week-old MI. These studies indicate that myocardial oxygen balance is perturbed in remodelled myocardium, thereby forcing the myocardium to increase its oxygen extraction. These perturbations do not appear to be the result of blunted Ī²-adrenergic or endothelial NO-mediated coronary vasodilator influences, and are opposed by an increased vasodilator influence through opening of KATP channels. Unexpectedly, we observed that despite increased circulating levels of noradrenaline, angiotensin II and endothelin-1, Ī±-adrenergic tone remained negligible, while the coronary vasoconstrictor influences of endogenous endothelin and angiotensin II were virtually abolished. We conclude that, early after MI, perturbations in myocardial oxygen balance are observed in remodelled myocardium. However, adaptive alterations in coronary resistance vessel control, consisting of increased vasodilator influences in conjunction with blunted vasoconstrictor influences, act to minimize the impairments of myocardial oxygen balance

    Involvement of PPAR-Ī³ in the neuroprotective and anti-inflammatory effects of angiotensin type 1 receptor inhibition: effects of the receptor antagonist telmisartan and receptor deletion in a mouse MPTP model of Parkinson's disease

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Several recent studies have shown that angiotensin type 1 receptor (AT1) antagonists such as candesartan inhibit the microglial inflammatory response and dopaminergic cell loss in animal models of Parkinson's disease. However, the mechanisms involved in the neuroprotective and anti-inflammatory effects of AT1 blockers in the brain have not been clarified. A number of studies have reported that AT1 blockers activate peroxisome proliferator-activated receptor gamma (PPAR Ī³). PPAR-Ī³ activation inhibits inflammation, and may be responsible for neuroprotective effects, independently of AT1 blocking actions.</p> <p>Methods</p> <p>We have investigated whether oral treatment with telmisartan (the most potent PPAR-Ī³ activator among AT1 blockers) provides neuroprotection against dopaminergic cell death and neuroinflammation, and the possible role of PPAR-Ī³ activation in any such neuroprotection. We used a mouse model of parkinsonism induced by the dopaminergic neurotoxin 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) and co-administration of the PPAR-Ī³ antagonist GW9662 to study the role of PPAR-Ī³ activation. In addition, we used AT1a-null mice lesioned with MPTP to study whether deletion of AT1 in the absence of any pharmacological effect of AT1 blockers provides neuroprotection, and investigated whether PPAR-Ī³ activation may also be involved in any such effect of AT1 deletion by co-administration of the PPAR-Ī³ antagonist GW9662.</p> <p>Results</p> <p>We observed that telmisartan protects mouse dopaminergic neurons and inhibits the microglial response induced by administration of MPTP. The protective effects of telmisartan on dopaminergic cell death and microglial activation were inhibited by co-administration of GW9662. Dopaminergic cell death and microglial activation were significantly lower in AT1a-null mice treated with MPTP than in mice not subjected to AT1a deletion. Interestingly, the protective effects of AT1 deletion were also inhibited by co-administration of GW9662.</p> <p>Conclusion</p> <p>The results suggest that telmisartan provides effective neuroprotection against dopaminergic cell death and that the neuroprotective effect is mediated by PPAR-Ī³ activation. However, the results in AT1-deficient mice show that blockage of AT1, unrelated to the pharmacological properties of AT1 blockers, also protects against dopaminergic cell death and neuroinflammation. Furthermore, the results show that PPAR-Ī³ activation is involved in the anti-inflammatory and neuroprotective effects of AT1 deletion.</p
    • ā€¦
    corecore