303 research outputs found

    Dendrimer Conjugation Enhances Tumor Penetration and Cell Kill of Doxorubicin in 3D Coculture Lung Cancer Models

    Get PDF
    Background: Doxorubicin (DOX) is a potent chemotherapeutic widely used for solid tumors (1). Despite high efficacy in 2D cell culture, DOX efficacy does not translate to in vivo lung cancer models (2). Major side effects such as cardiotoxicity may be alleviated with nano-based drug delivery systems (nanoDDS). However, tumor penetration of DOX and DOX-nanoDDS is largely unknown and is an additional barrier to effective clinical therapy (3). Here we describe a nanoDDS capable of enhancing the penetration of DOX. Methods: DOX was conjugated to generation 4 poly(amido-amine) dendrimers through (GFLG) tumor- liable bond. G4SA-GFLG-DOX was synthesized/characterized. spheroids were formed of (A549) lung adenocarcinoma cells and (3T3) fibroblasts. Spheroids were characterized for ECM components with immunohistochemistry. Confocal microscopy was used to evaluate the penetration, internalization, and colocalization of DOX and G4SA-GFLG-DOX. MTT assay and Caspase 3/7 to assess 2D and 3D cytotoxicity. Flow cytometry to determine cells uptake. Results: DOX conjugation to dendrimer resulted in G4SA-GFLG-DOX with ~5.5 DOX, 10±1 nm hydrodynamic diameter, and a -17±3 mV zeta-potential. Spheroids of (A549:3T3) were ECM- rich, developed ECM containing collagen-I, hyaluronan, laminin, and fibronectin. While DOX and G4SA-GFLG-DOX had similar toxicities in 2D model, G4SA-GFLG-DOX demonstrated a 3.1-fold greater penetration into spheroids compared to DOX and correlated to a greater efficacy as measured by caspase 3/7 activity. Also, flow cytometry showed higher uptake of G4SA- GFLG-DOX in cancer cells compared to fibroblasts. Conclusion: The work demonstrates enhanced penetration of DOX, via dendrimer conjugation, into an ECM- rich 3D lung cancer model. The enhanced penetration of G4SA-GFLG-DOX correlated with greater antitumor efficacy. Acknowledgements: We acknowledge partial financial support from the Center for Pharmaceutical Engineering and Sciences - School of Pharmacy at VCU. This study was supported by VCU Quest for Distinction and NSF (DRM #1508363). Microscopy was performed at the VCU Microscopy Facility, supported, in part, by funding from NIH-NCI Cancer Center Support Grant P30 CA016059. RA would like to acknowledge King Faisal University (KFU) and Saudi Arabian Cultural Mission (SACM) for a scholarship.https://scholarscompass.vcu.edu/gradposters/1091/thumbnail.jp

    Chloroplast DNA analysis in oak stands (Quercus robur L.) in North Rhine-Westphalia with presumably Slavonian origin: Is there an association between geographic origin and bud phenology?

    Get PDF
    Slavonian oaks (Quercus robur subsp. slavonica) have been introduced into Germany in the second half of the 19th century from the lowlands of the rivers Save and Drava in today’s Croatia. If compared to indigenous oak stands, they are characterized by good growth, comparatively low seed production and a late bud burst. Based on the information of European-wide variation patterns at chloroplast DNA markers in oaks we adapted chloroplast microsatellites for the analysis of all oak stands of presumably Slavonian origin in the Münsterland and lower Rhine regions. We were able to distinguish between Slavonian haplotypes with no natural occurrence in the study area and indigenous types that do not occur in the Balkan region. A generally high differentiation among stands was observed at chloroplast markers (GST = 0.674). Based on the haplotype information and historic records we found that stands with Slavonian material have been established between the years 1878 and 1903. In a total of 910 analysed trees the Slavonian haplotypes 5, 2 or 17 were the most frequent ones but a considerable amount of samples with indigenous haplotype 1 or haplotype10 with presumed origin in Southwestern Europe was also present. A clear association between haplotype 2 and late bud burst was detected in adult stands and in a field trial established with seeds from Slavonian and indigenous oak stands. The information about the haplotype composition in all Slavonian stands can be used as reference for the certification of reproductive material. The analysis of cpDNA haploytpes in old oak stands that had been established before the introduction of foreign seed material can give valuable information for the identification of indigenous oak stands

    How to coordinate Vaccination and Social Distancing to mitigate SARS-CoV-2 Outbreaks

    Get PDF

    Generalized Modeling of Photoluminescence Transients

    Get PDF
    Time resolved photoluminescence TRPL measurements and the extraction of meaningful parameters involve four key ingredients a suitable sample such as a semiconductor double heterostructure, a state of the art measurement setup, a kinetic model appropriate for the description of the sample behavior, and a general analysis method to extract the model parameters of interest from the measured TRPL transients. Until now, the last ingredient is limited to single curve fits, which are mostly based on simple models and least squares fits. These are often insufficient for the parameter extraction in real world applications. The goal of this article is to give the community a universal method for the analysis of TRPL measurements, which accounts for the Poisson distribution of photon counting events. The method can be used to fit multiple TRPL transients simultaneously using general kinematic models, but should also be used for single transient fits. To demonstrate this approach, multiple TRPL transients of a GaAs AlGaAs heterostructure are fitted simultaneously using coupled rate equations. It is shown that the simultaneous fits of several TRPL traces supplemented by systematic error estimations allow for a more meaningful and more robust parameter determination. The statistical methods also quantify the quality of the description by the underlying physical mode

    Structures of active melanocortin-4 receptor−Gs-protein complexes with NDP-α-MSH and setmelanotide

    Get PDF
    The melanocortin-4 receptor (MC4R), a hypothalamic master regulator of energy homeostasis and appetite, is a class A G-protein-coupled receptor and a prime target for the pharmacological treatment of obesity. Here, we present cryo-electron microscopy structures of MC4R–Gs-protein complexes with two drugs recently approved by the FDA, the peptide agonists NDP-α-MSH and setmelanotide, with 2.9 Å and 2.6 Å resolution. Together with signaling data from structure-derived MC4R mutants, the complex structures reveal the agonist-induced origin of transmembrane helix (TM) 6-regulated receptor activation. The ligand-binding modes of NDP-α-MSH, a high-affinity linear variant of the endogenous agonist α-MSH, and setmelanotide, a cyclic anti-obesity drug with biased signaling toward Gq/11, underline the key role of TM3 in ligand-specific interactions and of calcium ion as a ligand-adaptable cofactor. The agonist-specific TM3 interplay subsequently impacts receptor–Gs-protein interfaces at intracellular loop 2, which also regulates the G-protein coupling profile of this promiscuous receptor. Finally, our structures reveal mechanistic details of MC4R activation/inhibition, and provide important insights into the regulation of the receptor signaling profile which will facilitate the development of tailored anti-obesity drugs

    Terrestrial vegetation redistribution and carbon balance under climate change

    Get PDF
    BACKGROUND: Dynamic Global Vegetation Models (DGVMs) compute the terrestrial carbon balance as well as the transient spatial distribution of vegetation. We study two scenarios of moderate and strong climate change (2.9 K and 5.3 K temperature increase over present) to investigate the spatial redistribution of major vegetation types and their carbon balance in the year 2100. RESULTS: The world's land vegetation will be more deciduous than at present, and contain about 125 billion tons of additional carbon. While a recession of the boreal forest is simulated in some areas, along with a general expansion to the north, we do not observe a reported collapse of the central Amazonian rain forest. Rather, a decrease of biomass and a change of vegetation type occurs in its northeastern part. The ability of the terrestrial biosphere to sequester carbon from the atmosphere declines strongly in the second half of the 21(st )century. CONCLUSION: Climate change will cause widespread shifts in the distribution of major vegetation functional types on all continents by the year 2100

    Impacts of climate change on plant diseases – opinions and trends

    Get PDF
    There has been a remarkable scientific output on the topic of how climate change is likely to affect plant diseases in the coming decades. This review addresses the need for review of this burgeoning literature by summarizing opinions of previous reviews and trends in recent studies on the impacts of climate change on plant health. Sudden Oak Death is used as an introductory case study: Californian forests could become even more susceptible to this emerging plant disease, if spring precipitations will be accompanied by warmer temperatures, although climate shifts may also affect the current synchronicity between host cambium activity and pathogen colonization rate. A summary of observed and predicted climate changes, as well as of direct effects of climate change on pathosystems, is provided. Prediction and management of climate change effects on plant health are complicated by indirect effects and the interactions with global change drivers. Uncertainty in models of plant disease development under climate change calls for a diversity of management strategies, from more participatory approaches to interdisciplinary science. Involvement of stakeholders and scientists from outside plant pathology shows the importance of trade-offs, for example in the land-sharing vs. sparing debate. Further research is needed on climate change and plant health in mountain, boreal, Mediterranean and tropical regions, with multiple climate change factors and scenarios (including our responses to it, e.g. the assisted migration of plants), in relation to endophytes, viruses and mycorrhiza, using long-term and large-scale datasets and considering various plant disease control methods

    Detection of Plant DNA in the Bronchoalveolar Lavage of Patients with Ventilator-Associated Pneumonia

    Get PDF
    BACKGROUND: Hospital-acquired infections such as nosocomial pneumonia are a serious cause of mortality for hospitalized patients, especially for those admitted to intensive care units (ICUs). Despite the number of the studies reported to date, the causative agents of pneumonia are not completely known. Herein, we found by molecular technique that vegetable and tobacco DNA may be detected in the bronchoalveolar lavage from patients with ventilator-associated pneumonia (VAP). METHODOLOGY/PRINCIPAL FINDINGS: In the present study, we studied bronchoalveolar lavage (BAL) from patients admitted to ICUs with ventilator-associated pneumonia. BAL fluids were assessed with molecular tests, culture and blood culture. We successfully identified plant DNA in six patients out of 106 (6%) with ventilator-associated pneumonia. Inhalation was confirmed in four cases and suspected in the other two cases. Inhalation was significantly frequent in patients with plant DNA (four out of six patients) than those without plant DNA (three out of 100 patients) (P<0.001). Nicotiana tabacum chloroplast DNA was identified in three patients who were smokers (cases 2, 3 and 6). Cucurbita pepo, Morus bombycis and Triticum aestivum DNA were identified in cases 1, 4 and 5 respectively. Twenty-three different bacterial species, two viruses and five fungal species were identified from among these six patients by using molecular and culture techniques. Several of the pathogenic microorganisms identified are reported to be food-borne or tobacco plant-associated pathogens. CONCLUSIONS/SIGNIFICANCE: Our study shows that plants DNA may be identified in the BAL fluid of pneumonia patients, especially when exploring aspiration pneumonia, but the significance of the presence of plant DNA and its role in the pathogenesis of pneumonia is unknown and remains to be investigated. However, the identification of these plants may be a potential marker of aspiration in patients with pneumonia

    Agglomerated novel spray-dried lactose-leucine tailored as a carrier to enhance the aerosolization performance of salbutamol sulfate from DPI formulations

    Get PDF
    Spray-drying allows to modify the physicochemical/mechanical properties of particles along with their morphology. In the present study, L-leucine with varying concentrations (0.1, 0.5, 1, 5, and 10% w/v) were incorporated into lactose monohydrate solution for spray-drying to enhance the aerosolization performance of dry powder inhalers containing spray-dried lactose-leucine and salbutamol sulfate. The prepared spray-dried lactose-leucine carriers were analyzed using laser diffraction (particle size), differential scanning calorimetry (thermal behavior), scanning electron microscopy (morphology), powder X-ray diffraction (crystallinity), Fourier transform infrared spectroscopy (interaction at molecular level), and in vitro aerosolization performance (deposition). The results showed that the efficacy of salbutamol sulfate’s aerosolization performance was, in part, due to the introduction of L-leucine in the carrier, prior to being spray-dried, accounting for an increase in the fine particle fraction (FPF) of salbutamol sulfate from spray-dried lactose-leucine (0.5% leucine) in comparison to all other carriers. It was shown that all of the spray-dried carriers were spherical in their morphology with some agglomerates and contained a mixture of amorphous, α-lactose, and β-lactose. It was also interesting to note that spray-dried lactose-leucine particles were agglomerated during the spray-drying process to make coarse particles (volume mean diameter of 79 to 87 μm) suitable as a carrier in DPI formulations
    corecore