46 research outputs found

    An international comparison of Retinopathy of Prematurity grading performance within the Benefits of Oxygen Saturation Targeting (BOOST) II trials. International variation in ROP grading.

    Get PDF
    PurposeTo investigate whether the observed international differences in retinopathy of prematurity (ROP) treatment rates within the Benefits of Oxygen Saturation Targeting (BOOST) II trials might have been caused by international variation in ROP disease grading.MethodsGroups of BOOST II trial ophthalmologists in UK, Australia, and New Zealand (ANZ), and an international reference group (INT) used a web based system to grade a selection of RetCam images of ROP acquired during the BOOST II UK trial. Rates of decisions to treat, plus disease grading, ROP stage grading, ROP zone grading, inter-observer variation within groups and intra-observer variation within groups were measured.ResultsForty-two eye examinations were graded. UK ophthalmologists diagnosed treat-requiring ROP more frequently than ANZ ophthalmologists, 13.9 (3.49) compared to 9.4 (4.46) eye examinations, P=0.038. UK ophthalmologists diagnosed plus disease more frequently than ANZ ophthalmologists, 14.1 (6.23) compared to 8.5 (3.24) eye examinations, P=0.021. ANZ ophthalmologists diagnosed stage 2 ROP more frequently than UK ophthalmologists, 20.2 (5.8) compared to 12.7 (7.1) eye examinations, P=0.026. There were no other significant differences in the grading of ROP stage or zone. Inter-observer variation was higher within the UK group than within the ANZ group. Intra-observer variation was low in both groups.ConclusionsWe have found evidence of international variation in the diagnosis of treatment-requiring ROP. Improved standardisation of the diagnosis of treatment-requiring ROP is required. Measures might include improved training in the grading of ROP, using an international approach, and further development of ROP image analysis software.Eye advance online publication, 28 July 2017; doi:10.1038/eye.2017.150

    Plasma Cholesterol-Induced Lesion Networks Activated before Regression of Early, Mature, and Advanced Atherosclerosis

    Get PDF
    Plasma cholesterol lowering (PCL) slows and sometimes prevents progression of atherosclerosis and may even lead to regression. Little is known about how molecular processes in the atherosclerotic arterial wall respond to PCL and modify responses to atherosclerosis regression. We studied atherosclerosis regression and global gene expression responses to PCL (>= 80%) and to atherosclerosis regression itself in early, mature, and advanced lesions. In atherosclerotic aortic wall from Ldlr(-/-)Apob(100/100)Mttp(flox/flox)Mx1-Cre mice, atherosclerosis regressed after PCL regardless of lesion stage. However, near-complete regression was observed only in mice with early lesions; mice with mature and advanced lesions were left with regression-resistant, relatively unstable plaque remnants. Atherosclerosis genes responding to PCL before regression, unlike those responding to the regression itself, were enriched in inherited risk for coronary artery disease and myocardial infarction, indicating causality. Inference of transcription factor (TF) regulatory networks of these PCL-responsive gene sets revealed largely different networks in early, mature, and advanced lesions. In early lesions, PPARG was identified as a specific master regulator of the PCL-responsive atherosclerosis TF-regulatory network, whereas in mature and advanced lesions, the specific master regulators were MLL5 and SRSF10/XRN2, respectively. In a THP-1 foam cell model of atherosclerosis regression, siRNA targeting of these master regulators activated the time-point-specific TF-regulatory networks and altered the accumulation of cholesterol esters. We conclude that PCL leads to complete atherosclerosis regression only in mice with early lesions. Identified master regulators and related PCL-responsive TF-regulatory networks will be interesting targets to enhance PCL-mediated regression of mature and advanced atherosclerotic lesions. Author Summary The main underlying cause of heart attacks and strokes is atherosclerosis. One strategy to prevent these often deadly clinical events is therefore either to slow atherosclerosis progression or better, induce regression of atherosclerotic plaques making them more stable. Plasma cholesterol lowering (PCL) is the most efficient way to induce atherosclerosis regression but sometimes fails to do so. In our study, we used a mouse model with elevated LDL cholesterol levels, similar to humans who develop early atherosclerosis, and a genetic switch to lower plasma cholesterol at any time during atherosclerosis progression. In this model, we examined atherosclerosis gene expression and regression in response to PCL at three different stages of atherosclerosis progression. PCL led to complete regression in mice with early lesions but was incomplete in mice with mature and advanced lesions, indicating that early prevention with PCL in individuals with increased risk for heart attack or stroke would be particularly useful. In addition, by inferring PCL-responsive gene networks in early, mature and advanced atherosclerotic lesions, we identified key drivers specific for regression of early (PPARG), mature (MLL5) and advanced (SRSF10/XRN2) atherosclerosis. These key drivers should be interesting therapeutic targets to enhance PCL-mediated regression of atherosclerosis

    Salt bridges in the miniature viral channel Kcv are important for function

    No full text
    The viral potassium channel Kcv comprises only 94 amino acids, which represent the pore module of more complex K+ channels. As for Kir-type channels, Kcv also has a short N-terminal helix exposed to the cytoplasm, upstream of the first transmembrane domain. Here we show that this helix is relevant for Kcv function. The presence of charged amino acids, which form dynamic inter- and intra-subunit salt bridges is crucial. Electrophysiological measurements, yeast rescue experiments and molecular dynamics simulations show that mutants in which the critical salt bridge formation is impaired have no or reduced channel activity. We conclude that these salt bridges destabilise the complexation of K+ ions by negative charges on the inner transmembrane domain at the entrance into the cavity. This feature facilitates a continuous and coordinated transfer of ions between the cavity and the cytoplasm for channels without the canonical bundle crossing

    Attenuation of early atherogenesis in low-density lipoprotein receptor-deficient mice by proteasome inhibition.

    No full text
    OBJECTIVE: Low and nontoxic proteasome inhibition has anti-inflammatory, antiproliferative, and antioxidative effects on vascular cells in vitro and in vivo. We hypothesized that low-dose inhibition of the proteasome could provide antiatherogenic protection. The present study investigated the effect of low-dose proteasome inhibition on early lesion formation in low-density lipoprotein receptor-deficient mice fed a Western-type diet. METHODS AND RESULTS: Male low-density lipoprotein receptor-deficient mice, 10 weeks old, were fed a Western-type diet for 6 weeks with intraperitoneal injections of bortezomib or solvent. Bortezomib was injected at a dose of 50 μg/kg body weight. Cholesterol plasma levels were not affected by bortezomib treatment. En face Oil Red O staining of aortae and aortic root cryosections demonstrated significant reduction of atherosclerotic lesion coverage in bortezomib-treated animals. Bortezomib significantly reduced vascular cellular adhesion molecule-1 expression and macrophage infiltration as shown by histological analysis. Bortezomib treatment resulted in a significant reduction of superoxide content, lipid peroxidation and protein oxidation products, serum levels of monocyte chemoattractant protein-1, and interleukin-6. Gene expression microarray analysis showed that expressional changes induced by Western-type diet were attenuated by treatment with low-dose bortezomib. CONCLUSIONS: Low-dose proteasome inhibition exerts antioxidative and anti-inflammatory effects and attenuates development of atherosclerotic lesions in low-density lipoprotein receptor-deficient mice
    corecore