47 research outputs found

    Scalable bacterial production of moldable and recyclable biomineralized cellulose with tunable mechanical properties

    Get PDF
    Sustainable structural materials with excellent impact-resistance properties are urgently needed but challenging to produce, especially in a scalable fashion and with control over 3D shape. Here, we show that bacterial cellulose (BC) and bacterially precipitated calcium carbonate self-assemble into a layered structure reminiscent of tough biomineralized materials in nature (nacre, bone, dentin). The fabrication method consists of biomineralizing BC to form an organic/inorganic mixed slurry, in which calcium carbonate crystal size is controlled with bacterial poly(γ-glutamic acid) and magnesium ions. This slurry self-assembles into a layered material that combines high toughness and high impact and fire resistance. The rapid fabrication is readily scalable, without involving toxic chemicals. Notably, the biomineralized BC can be repeatedly recycled and molded into any desired 3D shape and size using a simple kitchen blender and sieve. This fully biodegradable composite is well suited for use as a component in daily life, including furniture, helmets, and protective garments.The authors thank Ward Groutars and Elvin Karana for useful discussions. K.Y. is supported financially by the China Scholarship Council (CSC no.201706630001). S.B. is funded by the Air Force Office of Scientific Research, Asian Office of Aerospace Research and Development (grant no. FA2386-18-1-4059)

    INVESTIGATION OF ADSORBENT BEHAVIOR BY GAS-SOLID CHROMATOGRAPHY

    No full text
    Abstract not availabl

    Carpenter bee thorax vibration and force generation inform pollen release mechanisms during floral buzzing

    No full text
    Approximately 10% of flowering plant species conceal their pollen within tube-like poricidal anthers. Bees extract pollen from poricidal anthers via floral buzzing, a behavior during which they apply cyclic forces by biting the anther and rapidly contracting their flight muscles. The success of pollen extraction during floral buzzing relies on the direction and magnitude of the forces applied by the bees, yet these forces and forcing directions have not been previously quantified. In this work, we developed an experiment to simultaneously measure the directional forces and thorax kinematics produced by carpenter bees (Xylocopa californica) during defensive buzzing, a behavior regulated by similar physiological mechanisms as floral buzzing. We found that the buzzing frequencies averaged about 130 Hz and were highly variable within individuals. Force amplitudes were on average 170 mN, but at times reached nearly 500 mN. These forces were 30–80 times greater than the weight of the bees tested. The two largest forces occurred within a plane formed by the bees’ flight muscles. Force amplitudes were moderately correlated with thorax displacement, velocity and acceleration amplitudes but only weakly correlated with buzzing frequency. Linear models developed through this work provide a mechanism to estimate forces produced during non-flight behaviors based on thorax kinematic measurements in carpenter bees. Based on the buzzing frequencies, individual bee’s capacity to vary buzz frequency and predominant forcing directions, we hypothesize that carpenter bees leverage vibration amplification to increase the deformation of poricidal anthers, and hence the amount of pollen ejected. © 2022, The Author(s).Open access journalThis item from the UA Faculty Publications collection is made available by the University of Arizona with support from the University of Arizona Libraries. If you have questions, please contact us at [email protected]

    A Simple, Rapid 125

    No full text
    corecore