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ABSTRACT
Background. Disturbances in mineral and bone metabolism represent one of the most
complex complications of chronic kidney disease (CKD). Serotonin, a monoamine
synthesized from tryptophan, may play a potential role in bone metabolism. Brain-
derived serotonin exerts a positive effect on the bone structure by limiting bone
resorption and enhancing bone formation. Tryptophan is the precursor not only to the
serotonin but also and primarily to kynurenine metabolites. The ultimate aim of the
present study was to determine the association between central kynurenine metabolism
and biomechanical as well as geometrical properties of bone in the experimental model
of the early stage of CKD.
Methods. Thirty-three Wistar rats were randomly divided into two groups (sham-
operated and subtotal nephrectomized animals). Three months after surgery, serum
samples were obtained for the determination of biochemical parameters, bone turnover
biomarkers, and kynurenine pathway metabolites; tibias were collected for bone
biomechanical, bone geometrical, and bonemass density analysis; brains were removed
and divided into five regions for the determination of kynurenine pathwaymetabolites.
Results. Subtotal nephrectomized rats presented higher serum concentrations of crea-
tinine, urea nitrogen, and parathyroid hormone, and developed hypocalcemia. Several
biomechanical and geometrical parameters were significantly elevated in rats with
experimentally induced CKD. Subtotal nephrectomized rats presented significantly
higher kynurenine concentrations and kynurenine/tryptophan ratio and significantly
lower tryptophan levels in all studied parts of the brain. Kynurenine in the frontal cortex
and tryptophan in the hypothalamus and striatum correlated positively with the main
parameters of bone biomechanics and bone geometry.
Discussion. In addition to the complex mineral, hormone, and metabolite changes,
intensified central kynurenine turnover may play an important role in the development
of bone changes in the course of CKD.
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INTRODUCTION
Abnormal mineral, endocrine, and bone metabolism represents one of the most complex
complications of chronic kidney disease (CKD). In patients with CKD, the kidneys fail to
excrete a phosphate appropriately, leading to hyperphosphatemia and decreased biologi-
cally active form of vitaminD. VitaminD deficiency causes a reduction in intestinal calcium
absorption and increase in parathyroid hormone (PTH) concentration with associated
elevations in the levels of fibroblast growth factor-23. This systemic disorder, commonly
known as CKD-mineral and bone disorder (CKD-MBD), can be manifested by decreased
quality of life and increased fractures, morbidity, andmortality (Moe et al., 2006;Moe et al.,
2009). Although the relationships between CKD and bone disturbances have been studied
for many years, the exact pathophysiology of CKD-MBD remains unclear.

The neurotransmitter regulationmay be involved in the development of CKD-MBD (Wu
et al., 2015). Although many brain-derived neurotransmitters do not cross the blood–brain
barrier, they may act on bone metabolism through an indirect mechanism. Indeed, the
brain-derived serotonin does not cross the blood–brain barrier (Mann et al., 1992) and yet
it exerts a positive effect on the bone structure by limiting bone resorption and enhancing
bone formation. Serotonin as a neurotransmitter acts on neurons of the ventromedial
hypothalamic nuclei, activates serotonin receptor 5-HT2C, decreases sympathetic tone and
thereby supports bone mass density (Yadav et al., 2009). Interestingly, serotonin, when
produced peripherally, exerts opposite influences on the bone formation (Yadav et al.,
2008; Ducy & Karsenty, 2010). Our recent correlative evidence confirms that the elevated
peripheral serotonin may adversely affect the strength and metabolism of long bones in
rats with experimental CKD (Pawlak et al., 2016).

Both centrally and peripherally produced serotonin is synthesized from the precursor
tryptophan (TRP) by two distinct enzymes (O’Mahony et al., 2015). TRP is the precursor
not only to the serotonin but also and primarily to kynureninemetabolites (Schwarcz, 2004).
Kynurenine pathway plays a crucial role in several processes, including redox homeostasis
(Gonzalez Esquivel et al., 2017), gluconeogenesis (Dayer, Safari & Dayer, 2009), diabetic
retinopathy (Munipally et al., 2011), inflammation (Heyes et al., 1992), carcinogenesis
(Prendergast, 2011), and apoptosis (Fallarino et al., 2002). The knowledge of the role of the
kynurenine pathway in bone metabolism is limited. Bone mineral density was associated
with several of the kynurenines (Apalset et al., 2014). Patients with osteoporosis presented
lower levels of TRP and 3-hydroxyanthranilic acid, whereas higher levels of anthranilic acid
compared with healthy controls (Forrest et al., 2006). Moreover, TRP degradation via
kynurenine pathway was also increased during osteoblastogenesis (Vidal et al., 2015). We
have previously demonstrated the serious behavioral and severe central kynurenine pathway
disturbances in rats with end-stage chronic renal insufficiency (Topczewska-Bruns et al.,
2001; Topczewska-Bruns et al., 2002). The ultimate aim of the present study was to deter-
mine the association between central kynurenine pathway metabolites and biomechanical
as well as geometrical properties of bone in an experimental model of CKD in rats.
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MATERIALS & METHODS
Animals
Wistar ratswere purchased from theCenter of ExperimentalMedicine inMedicalUniversity
of Bialystok. Rats were housed in temperature and humidity controlled room according to
Good Laboratory Practice rules. They were allowed to have ad libitum access to sterilized
tap water and standard chow (Ssniff R-Z V1324). All procedures involving animals were
approved by Local Ethical Committee on Animal Testing at the Medical University of
Bialystok (Permit Number 17/2012) and conducted by ARRIVE guidelines (Kilkenny et al.,
2010), EU Directive 2010/63/EU for animal experiments and the Council on the protection
of animals used for scientific purposes.

Design of experiment
Thirty-three Wistar rats weighing 117 ± 16 g were randomly divided into two groups:
sham-operated (Sham, n= 15) and subtotal nephrectomized rats (5/6 Nx, n= 18). The
subtotal nephrectomy was performed according to the procedure described by Sviglerova
et al. (2010). Sham-operated rats underwent renal evacuation and decapsulation. Three
months after surgery, rats were weighed and anesthetized intraperitoneally with ketamine
(100 mg/kg) and xylazine (10 mg/kg). Blood samples were taken from the heart and cen-
trifuged to obtain serum for 10min at 4,000× g. After centrifugation serumwas frozen until
biochemical and high-performance liquid chromatography (HPLC) analysis. Then, tibias
were dissected, cleaned of adhering soft tissue, weighted using electronic scales Kern
ALT 100-5-A (Kern, Bellingen, Germany), measured with calipers (Artpol, Warszawska,
Poland), and frozen until biomechanical and geometrical analysis. Brains were removed,
divided into five regions (cerebellum, brainstem, frontal cortex, hypothalamus, striatum),
immediately frozen and stored at −80 ◦C until HPLC analysis.

Serum biochemistry
Serum urea and creatinine concentrations were measured using automated biochemical
analyzer (Mindray BS-120; Mindray, Mahwah, NJ, USA) with the commercially available
kit (CORMAY, Poland). Serum inorganic phosphorus, calcium, and alkaline phosphatase
(ALP) were measured using commercially available kits (BioMaxima, Lublin, Poland).
Intact parathyroid hormone (PTH) osteoclast-derived tartrate-resistant acid phosphatase
form 5b (TRACP 5b) were determined by ELISA using commercially available colorimetric
kits purchased from Immunotopic (USA) and Immunodiagnostic Systems (Frankfurt am
Main, Germany), respectively.

Bone biomechanics
Before biomechanical analysis, tibias were thoroughly thawed to room temperature. Bone
mechanical properties were determined using the three-point bending test as described
previously (Brzoska, Majewska & Moniuszko-Jakoniuk, 2005). The testing was performed
usingmachine Zwick Roell Z.2.5 (Zwick, Stuttgart, Germany). Bonemechanical parameters
included stiffness, the resistance of the tibia diaphysis to deformation (yield load), the
resistance of the tibia diaphysis to fracture (ultimate load), their displacements, and work
to fracture (Oksztulska-Kolanek et al., 2016).
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Cross-sectional geometry and bone mass density
Bone fragments obtained after biomechanical analysis weremeasuredwith calipers to obtain
geometrical parameters: anterior-posterior periosteal diameter, anterior-posterior en-
dosteal diameter, medial-lateral periosteal diameter, medial-lateral endosteal diameter, and
wall thickness. Cortical index, cross-sectional area, mean relative wall thickness and cross-
sectional moment of inertia were calculated using formulas described previously (Brzoska,
Majewska & Moniuszko-Jakoniuk, 2005; Gajos-Michniewicz et al., 2012). Archimedes’
principle determination of bone density was calculated using the formula described by
Keenan et al. (1997).

HPLC analysis
Serum and brain concentrations of TRP, kynurenine (KYN), and 3-hydroxykynurenine
(3HK) were determined by HPLC (Agilent 1260 series; Agilent Technologies, Santa Clara,
CA, USA). Deproteinized serum samples were prepared by adding 2 M perchloric acid.
Samples were vortexed, kept at 4 ◦C for 10 min, and centrifuged at 14,000× g for 30 min
at 4 ◦C. The supernatant was injected into HPLC system for analysis. Brain tissues were
homogenized in 20% trichloroacetic acid containing 0.1% EDTA. The samples were
centrifuged at 14,000× g for 20 min at 4 ◦C. After centrifugation, the supernatant was
filtered (0.45 µmMillipore filter) and stored at −80 ◦C until assayed.

TRP and KYN concentrations were measured according toHolmes (1988). The prepared
samples (2 µL) were separated on ODS column (Waters Spherisorb 3 µm ODS 2,
2.1 × 150 mm). The column effluent was monitored with diode array detector (KYN-365
nm, TRP-260 nm). Themobile phase was composed of 0.1M acetic acid, 0.1M ammonium
acetate (pH 4.6) containing 1.8% of acetonitrile and it was pumped at a flow-rate of
0.2mL/min. 3HKwasmeasured as described byHeyes & Quearry (1988). The column efflu-
entwasmonitored using a programmable electrochemical detector. Potential of theworking
electrode was 0.6 V. The mobile phase consisted of 0.1 M triethylamine, 0.1 M phosphoric
acid, 0.3 mM EDTA, 8.2 mM heptane-1-sulfonic acid sodium salt, containing 2% of
acetonitrile and was pumped at a flow-rate of 0.25 mL/min; 2 µL of the supernatant was
injected into HPLC system for analysis.

Statistical analysis
Shapiro–Wilk’s test of normality was used for data distribution analysis. The normally
distributed data were shown as mean ± SD and analyzed using unpaired Student t test.
The non-Gaussian data were presented as median (line) with interquartile range (box) and
maximum andminimum values (whiskers) and analyzed using the non-parametric Mann–
Whitney test. Spearman’s rank test calculated the correlations between study variables in
5/6 Nx rats. P-values less than 0.05 were considered statistically significant. The data were
analyzed with Statistica version 12 computer software (StatSoft, Tulsa, OK, USA). Graphic
design presentation of results was performed using R statistical software (version 3.3.2) or
GraphPad Prism 6 (La Jolla, CA, USA).
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Table 1 Body weight, biochemical parameters, and bone turnover biomarkers in sham-operated
(Sham) and nephrectomized (5/6 Nx) rats.

Sham 5/6 Nx

Final body weight, g 336.5± 63.8 313.6± 38.1
Creatinine, mg/dL 0.37± 0.07 0.63± 0.11***
Blood urea nitrogen, mg/dL 45.7± 6.1 77.7± 12.5***
Phosphorus, mg/dL 6.33± 1.83 5.87± 2.23
Calcium, mg/dL 5.86± 1.84 4.61± 1.54*
PTH, pg/mL 305.9± 91.2 526.4± 174.3***
ALP serum, U/L 45.8± 23.1 42.3± 19.1
TRACP 5b serum, U/L 158.0± 32.1 182.4± 47.6

Notes.
∗p< 0.05, ∗∗∗p< 0.001 vs sham group, unpaired Student t test. Data are mean± SD, n= 15–18.
Final body weight, weight at the time of sacrifice; PTH, parathyroid hormone; ALP, alkaline phosphatase; TRACP 5b,
tartrate-resistant acid phosphatase form 5b.

RESULTS
Animal characteristics
As shown inTable 1, the 5/6Nx animals had elevated serumcreatinine values and blood urea
nitrogen, developed hyperparathyroidism and hypocalcemia. There were no differences in
serum concentrations of phosphorus and serum activities of ALP and TRACP 5b between
5/6 Nx and controls. TRACP 5b activity showed only a trend to increase in 5/6 Nx animals
compared to control animals.

Bone characteristics
Work to fracture, anterior-posterior periosteal diameter, wall thickness, cortical index,
cross-sectional area, cross-sectional moment of inertia, mean relative wall thickness were
significantly higher after nephrectomy compared to sham. There were no differences in
Archimedes’ density between 5/6 Nx and controls (Table 2).

Kynurenine pathway metabolites in rat brain regions
Nephrectomized rats presented significantly lower TRP levels (Fig. 1A) and significantly
higherKYNconcentrations in all studied parts of the brain (Fig. 1B). Similarly toKYN levels,
KYN/TRP ratio was significantly higher in all studied parts of the brain (Fig. 1D). Surgical
resection of 5/6 kidney did not cause severe changes in the 3HK levels and 3-HKYN/KYN
ratio in the brain (Figs. 1C and 1E).

Relationships between kynurenine pathway metabolites in rat brain
regions and bone properties in 5/6 Nx rats
KYN concentrations in the cerebellum correlated positively only with the medial-lateral
periosteal diameter (Table S1). There were no statistically significant associations between
kynurenine pathway metabolites in rat brainstem and main bone parameters (Table S2).
KYN concentrations in the frontal cortex correlated positively with the ultimate load, tibial
weight, tibial length, medial-lateral periosteal diameter, wall thickness, cross-sectional
area, and mean relative wall thickness. TRP concentrations in the frontal cortex correlated
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Table 2 Bone biomechanics, geometry, and bone mass density of the tibia in sham-operated (Sham)
and nephrectomized (5/6 Nx) rats.

Sham 5/6 Nx

Bone biomechanics
Stiffness, N/mm 139.1± 45.9 165.0± 32.4
Yield load, N 58.8± 6.7 63.1± 8.4
Displacement at the yield load, µm 0.46± 0.12 0.40± 0.05
Ultimate load, N 77.7± 18.1 84.3± 12.0
Displacement at the ultimate load, µm 0.72± 0.17 0.76± 0.12
Work to fracture, mJ 29.3± 12.2 38.9± 9.0*

Bone geometry
Tibial weight, mg 448.3± 73.5 477.4± 76.8
Tibial length, mm 35.1± 3.2 35.0± 2.9
Anterior-posterior periosteal diameter, mm 2.27± 0.12 2.37± 0.13*
Medial-lateral periosteal diameter, mm 3.32± 0.38 3.33± 0.19
Anterior-posterior endosteal diameter, mm 1.82± 0.15 1.77± 0.16
Medial-lateral endosteal diameter, mm 2.86± 0.35 2.79± 0.32
Wall thickness, mm 0.23± 0.04 0.29± 0.05***
Cortical index, %× 10−3 13.7± 1.9 17.1± 3.2***
Cross-sectional area, mm2 1.83± 0.4 2.31± 0.40**
Cross-sectional moment of inertia, mm4 1.07± 0.25 1.37± 0.32**
Mean relative wall thickness,× 10−3 0.21± 0.04 0.27± 0.06**

Bone mass density
Archimedes’ density, g/cm3 1.48± 0.20 1.56± 0.22

Notes.
∗p< 0.05, ∗∗p< 0.01, ∗∗∗p< 0.001 vs sham group, unpaired Student t test. Data are mean± SD n= 15–18.

positively with the wall thickness and cross-sectional area, while 3HK correlated positively
with medial-lateral endosteal diameter and Archimedes’ density. 3HK concentrations in
the frontal cortex also correlated negatively with displacement at the ultimate load (Fig. 2
and Table S3). There were also statistically significant positive correlations between TRP
concentrations in the hypothalamus and stiffness, wall thickness, cross-sectional area, and
cross-sectional moment of inertia. KYN levels in the hypothalamus correlated positively
with the cortical index and mean relative wall thickness, but it was inversely associated
with the medial-lateral periosteal diameter (Fig. 2 and Table S4). There were statistically
significant positive correlations between TRP concentrations in the striatum and stiffness,
yield load, tibial weight, medial-lateral endosteal diameter as well as the cross-sectional
moment of inertia. 3HK concentrations in the striatum also correlated positively with work
to fracture (Fig. 2 and Table S5).

DISCUSSION
In the present study, we found that not only serotonin but also kynurenines as tryptophan
metabolites may be associated with the bone remodeling process. In contrast to complex
mineral and hormone changes, central kynurenine metabolites seem to play a beneficial
role in the development of bone changes in growing rats with experimentally induced

Kalaska et al. (2017), PeerJ, DOI 10.7717/peerj.3199 6/16

https://peerj.com
http://dx.doi.org/10.7717/peerj.3199#supp-3
http://dx.doi.org/10.7717/peerj.3199#supp-4
http://dx.doi.org/10.7717/peerj.3199#supp-5
http://dx.doi.org/10.7717/peerj.3199


Sham 5/6 Nx
0

20

40

60

T
R

P
,

n
m

o
l/g

*****

A

***

*** **

Sham 5/6 Nx
0

2

4

6

8

K
Y

N
/T

R
P

***

***

***

***

***

D

Sham 5/6 Nx
0

2

4

6

8

K
Y

N
,n

m
o

l/g

*

***

B
*

** ***

Sham 5/6 Nx
0

4

8

12

3H
K

/K
Y

N

Cerebellum
Brainstem
Frontal cortex
Hypothalamus
Striatum

E

Sham 5/6 Nx
0

5

10

15

20

25

3
H

K
,

p
m

o
l/g

*

C

*

Figure 1 Tryptophan (TRP; A), kynurenine (KYN; B), 3-hydroxykynurenine (3HK; C) KYN/TRP ratio
(D), and 3HK/KYN ratio (E) in different brain regions in sham-operated (Sham) and nephrectomized
(5/6 Nx) rats. ∗p< 0.05, ∗∗p< 0.01, ∗∗∗p< 0.001 vs sham group, Mann–Whitney test. Results are shown as
median (line) with interquartile range (box) and maximum and minimum values (whiskers).

CKD. We observed the intensified kynurenine turnover in all studied brain regions and
the strongest positive relationships between KYN in the frontal cortex as well as TRP in the
hypothalamus and striatum and bone biomechanical and geometrical parameters.

CKD was ranked 18th in the list of causes of a total number of global deaths in 2010 (an-
nual death rate 16.3 per 100,000) (Lozano et al., 2013). In contrast to the clinically apparent
advanced stage of CKD, precise calculation of the burden of less symptomatic or asymp-
tomatic early stage of CKD, which accounts for 80–90% of all cases (Jha et al., 2013), is
difficult. CKD-MBD is one of the most common and complex complications of CKD.
In accordance with the definition, CKD-MBD occurs when the glomerular filtration is
reduced by more than 40% (Moe et al., 2011). However, several results indicate that
CKD-MBD may begin earlier in the disease process and clinically asymptomatic metabolic
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Figure 2 Spearman correlation matrix between tryptophan (TRP), kynurenine (KYN), and 3-
hydroxykynurenine (3HK) in the frontal cortex, hypothalamus, and striatum and bone properties
in 5/6 Nx rats. The intensity and size of color represent the strength of the correlation (darker and
larger circles demonstrate the strong correlation). Blue colors, positive correlations; red colors, negative
correlations.

disturbances may precede the development of detectable abnormalities in plasma calcium,
phosphorus, and parathyroid hormone (Pereira et al., 2009; Oliveira et al., 2010; Isakova et
al., 2011; Sabbagh et al., 2012). Therefore, in our study, we used growing rats to understand
the bone pathophysiology in the early stage of CKD. The animal model induced by subtotal
nephrectomy mimics the progressive renal failure in humans and is commonly used
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to assess the pathophysiological aspects and the bone structure in the early CKD stages
(Moscovici et al., 1996; Heveran et al., 2016).

We observed significant alterations in TRP and KYN concentrations as well as KYN/TRP
ratio in all studied brain regions. Nephrectomized rats presented significantly lower TRP
levels and significantly higher KYN levels. Observed alterations in the brain may be associ-
ated with the disturbances in circulating kynurenine pathway metabolites in the course of
CKD (Saito et al., 2000; Pawlak et al., 2001a; Pawlak, Tankiewicz & Buczko, 2001b). Periph-
eral TRP, as well as KYN and 3HK, can enter the brain quite easily even under physiological
conditions (Fukui et al., 1991; Pardridge, 1998). In the present study, a possible disruption
of the blood–brain barrier under the pathological condition and increased permeation
of kynurenine metabolites cannot be excluded due to the increased blood urea nitrogen
in the serum and ongoing inflammation. Elevated concentrations of blood urea nitrogen
are known to increase levels of reactive oxygen species (Zhang et al., 2004; D’Apolito et al.,
2015), which are key mediators of blood–brain barrier breakdown (Pun, Lu & Moochhala,
2009). Mice with CKD induced by adenine feeding for four weeks presented higher serum
concentrations of urea nitrogen. In this model, authors observed significant blood–brain
barrier disruption and behavioral abnormalities (Mazumder et al., 2016). Blood–brain bar-
rier disruption was also found in nephrectomized rats with chronic uremia and was linked
to uremic encephalopathy (Jeppsson et al., 1982). On the other hand, approximately 60% of
the KYN in the brain comes from the plasma; the remaining 40% is locally synthesized in
the brain (Gal & Sherman, 1980). We have previously demonstrated the severe central
kynurenine pathway disturbances in rats with end-stage of chronic renal insufficiency. In
these animals, the levels of both KYN and 3HK were elevated in the different brain regions
(Topczewska-Bruns et al., 2002). In our growing rats with early-stage of CKD, the activation
of kynurenine pathway seems to be less pronounced.

Altered kynurenine pathway metabolites in certain brain regions correlated positively
with the main parameters of bone biomechanics and bone geometry. Bone biomechanics
were evaluated by the three-point bending test which is commonly used to measure
the bone properties in rodents and other small animals (Goodyear & Aspden, 2012). The
main biomechanical parameters include the stiffness, yield and ultimate loads and their
corresponding displacements, and work to fracture. Surprisingly, work to fracture were
significantly higher in nephrectomized rats than in controls, whereas yield and ultimate
loads that determine the whole bone strength were similar between groups. These results
suggest that the adaptive response in young rats could provide protection from the
deleterious effects of the early stage of CKD on the bone strength. Similar effects on bone
biomechanical parameters were observed in several studies on animals with the early stage of
CKD (Iwamoto et al., 2012; Jokihaara et al., 2006; Heveran et al., 2016). In the recent study,
Heveran et al. observed markedly altered maturation of bone material properties with
distance from the periosteal surface in animals with moderate CKD induced by subtotal
nephrectomy. These destructive alterations occurred despite minimal changes to bone
microarchitecture and without differences in whole bonemechanical or material properties
obtained from three-point bending test (Heveran et al., 2016). We observed the strongest
positive relationships between KYN in the frontal cortex as well as TRP in the hypothalamus
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and striatum and bone biomechanical and geometrical parameters in growing rats with
experimentally inducedCKD.The relationships between abovemetabolites and geometrical
parameters should be interpreted cautiously because geometrical analysis was calculated
based on not very precise measurements with calipers. On the other hand, we obtained sta-
tistically significant and consistent results. Regulation of bone metabolism in multicellular
organisms is the complex process. It depends on the interactions between different organs
or tissues. Besides bone-resorbing osteoclasts and bone-forming osteoblasts, hypothalamic
structures may be involved in the regulation of bone metabolism. The hypothalamus can
act on bonemetabolism through hormonal and neuronal signaling; leptin is one of themost
extensively studied hormones that affects bone metabolism via a serotonin-hypothalamus
pathway (Sharan & Yadav, 2014). Serotonergic neurons inhibit the synthesis of epinephrine
and decrease sympathetic tone. The inhibition of sympathetic activity decreases signaling
via theβ2 adrenergic receptor in osteoblasts, which negatively affects osteoblast proliferation
via the molecular clock gene/cyclin cascade and positively regulates bone resorption via
protein kinase A/activating transcription factor 4-dependent pathway (Ducy & Karsenty,
2010). Our study confirms the important role of the hypothalamus in the bone regulation
and suggests that the frontal cortex and striatummay also take part in the regulation of bone
changes in CKD. The effect of kynurenines on bone metabolism, similarly to serotonin
(Ducy & Karsenty, 2010), may be dependent on the site of their synthesis. In contrast to
the serotonin, kynurenines can cross the blood–brain barrier, can accumulate in the brain
during CKD, and can act on bone metabolism via both direct and indirect mechanism.
In our study, there were no statistically significant associations between peripheral and
central kynurenine pathway metabolites. It suggests that peripheral and central kynurenine
pathways act as two separate systems on bone metabolism in the course of CKD. Further
studies could confirm the protective effect of central kynurenines on bone metabolism and
explain the mechanism of their action.

Our results suggest that in addition to the complexmineral and hormone changes such as
hyperphosphatemia, hypocalcemia, hyperparathyroidism, and active vitamin D deficiency,
kynurenine pathway metabolites may play an important role in the development of CKD-
MBD. Studying the bone regulation by kynurenines has brought to light on the pleiotropic
nature of these molecules. Our results have enriched the understanding of the patho-
physiology of CKD-MBD. The effect of kynurenines on bone metabolism may be closely
dependent on the site of their occurrence. Peripheral and central kynurenines may exert
opposite influences on the bone formation. Among all studied brain regions, intensified
kynurenine turnover in the frontal cortex, hypothalamus, and striatum may be especially
responsible for the bone disturbances in CKD. The present study for the first time
demonstrates the association between intensified central kynurenine turnover and bone
metabolism in growing rats with CKD. The observed results open new possibilities for the
prevention, diagnosis, and treatment of bone abnormalities in CKD patients.
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