9 research outputs found

    Multiscale neural gradients reflect transdiagnostic effects of major psychiatric conditions on cortical morphology

    Full text link
    It is increasingly recognized that multiple psychiatric conditions are underpinned by shared neural pathways, affecting similar brain systems. Here, we carried out a multiscale neural contextualization of shared alterations of cortical morphology across six major psychiatric conditions (autism spectrum disorder, attention deficit/hyperactivity disorder, major depression disorder, obsessive-compulsive disorder, bipolar disorder, and schizophrenia). Our framework cross-referenced shared morphological anomalies with respect to cortical myeloarchitecture and cytoarchitecture, as well as connectome and neurotransmitter organization. Pooling disease-related effects on MRI-based cortical thickness measures across six ENIGMA working groups, including a total of 28,546 participants (12,876 patients and 15,670 controls), we identified a cortex-wide dimension of morphological changes that described a sensory-fugal pattern, with paralimbic regions showing the most consistent alterations across conditions. The shared disease dimension was closely related to cortical gradients of microstructure as well as neurotransmitter axes, specifically cortex-wide variations in serotonin and dopamine. Multiple sensitivity analyses confirmed robustness with respect to slight variations in analytical choices. Our findings embed shared effects of common psychiatric conditions on brain structure in multiple scales of brain organization, and may provide insights into neural mechanisms of transdiagnostic vulnerability

    Author Correction: An analysis-ready and quality controlled resource for pediatric brain white-matter research

    Get PDF

    The regional variation of laminar thickness in the human isocortex is related to cortical hierarchy and interregional connectivity

    No full text
    The human isocortex consists of tangentially organized layers with unique cytoarchitectural properties. These layers show spatial variations in thickness and cytoarchitecture across the neocortex, which is thought to support function through enabling targeted corticocortical connections. Here, leveraging maps of the 6 cortical layers based on 3D human brain histology, we aimed to quantitatively characterize the systematic covariation of laminar structure in the cortex and its functional consequences. After correcting for the effect of cortical curvature, we identified a spatial pattern of changes in laminar thickness covariance from lateral frontal to posterior occipital regions, which differentiated the dominance of infra- versus supragranular layer thickness. Corresponding to the laminar regularities of cortical connections along cortical hierarchy, the infragranular-dominant pattern of laminar thickness was associated with higher hierarchical positions of regions, mapped based on resting-state effective connectivity in humans and tract-tracing of structural connections in macaques. Moreover, we show that regions with similar laminar thickness patterns have a higher likelihood of structural connections and strength of functional connections. In sum, here, we characterize the organization of laminar thickness in the human isocortex and its association with cortico-cortical connectivity, illustrating how laminar organization may provide a foundational principle of cortical function

    Heritability of hippocampal functional and microstructural organisation

    Get PDF
    The hippocampus is a uniquely infolded allocortical structure in the medial temporal lobe that consists of the microstructurally and functionally distinct subregions: subiculum, cornu ammonis, and dentate gyrus. The hippocampus is a remarkably plastic region that is implicated in learning and memory. At the same time it has been shown that hippocampal subregion volumes are heritable, and that genetic expression varies along a posterior to anterior axis. Here, we studied how a heritable, stable, hippocampal organisation may support its flexible function in healthy adults. Leveraging the twin set-up of the Human Connectome Project with multimodal neuroimaging, we observed that the functional connectivity between hippocampus and cortex was heritable and that microstructure of the hippocampus genetically correlated with cortical microstructure. Moreover, both functional and microstructural organisation could be consistently captured by anterior-to-posterior and medial-to-lateral axes across individuals. However, heritability of functional, relative to microstructural, organisation was found reduced, suggesting individual variation in functional organisation may be explained by experience-driven factors. Last, we demonstrate that structure and function couple along an inherited macroscale organisation, suggesting an interplay of stability and plasticity within the hippocampus. Our study provides new insights on the heritability of the hippocampal of the structure and function within the hippocampal organisation

    Evidence From Imaging Resilience Genetics for a Protective Mechanism Against Schizophrenia in the Ventral Visual Pathway

    Get PDF
    IntroductionIlluminating neurobiological mechanisms underlying the protective effect of recently discovered common genetic resilience variants for schizophrenia is crucial for more effective prevention efforts. Current models implicate adaptive neuroplastic changes in the visual system and their pro-cognitive effects as a schizophrenia resilience mechanism. We investigated whether common genetic resilience variants might affect brain structure in similar neural circuits.MethodUsing structural magnetic resonance imaging, we measured the impact of an established schizophrenia polygenic resilience score (PRSResilience) on cortical volume, thickness, and surface area in 101 healthy subjects and in a replication sample of 33 224 healthy subjects (UK Biobank).FindingWe observed a significant positive whole-brain correlation between PRSResilience and cortical volume in the right fusiform gyrus (FFG) (r = 0.35; P = .0004). Post-hoc analyses in this cluster revealed an impact of PRSResilience on cortical surface area. The replication sample showed a positive correlation between PRSResilience and global cortical volume and surface area in the left FFG.ConclusionOur findings represent the first evidence of a neurobiological correlate of a genetic resilience factor for schizophrenia. They support the view that schizophrenia resilience emerges from strengthening neural circuits in the ventral visual pathway and an increased capacity for the disambiguation of social and nonsocial visual information. This may aid psychosocial functioning, ameliorate the detrimental effects of subtle perceptual and cognitive disturbances in at-risk individuals, and facilitate coping with the cognitive and psychosocial consequences of stressors. Our results thus provide a novel link between visual cognition, the vulnerability-stress concept, and schizophrenia resilience models

    Multilevel neural gradients reflect transdiagnostic effects of major psychiatric conditions on cortical morphology

    No full text
    It is increasingly recognized that multiple psychiatric conditions are underpinned by shared neural pathways, affecting similar brain systems. Here, we assessed i) shared dimensions of alterations in cortical morphology across six major psychiatric conditions (autism spectrum disorder, attention deficit/hyperactivity disorder, major depression, obsessive-compulsive disorder, bipolar disorder, schizophrenia) and ii) carried out a multiscale neural contextualization, by cross-referencing shared anomalies against cortical myeloarchitecture and cytoarchitecture, as well as connectome and neurotransmitter organization. Pooling disease-related effects on MRI-based cortical thickness measures across six ENIGMA working groups, including a total of 28,546 participants (12,876 patients and 15,670 controls), we computed a shared disease dimension on cortical morphology using principal component analysis that described a sensory-fugal pattern with paralimbic regions showing the most consistent abnormalities across conditions. The shared disease dimension was closely related to cortical gradients of microstructure and intrinsic connectivity, as well as neurotransmitter systems, specifically serotonin and dopamine. Our findings embed the shared effects of major psychiatric conditions on brain structure in multiple scales of brain organization and may provide novel insights into neural mechanisms into transdiagnostic vulnerability

    Multiscale neural gradients reflect transdiagnostic effects of major psychiatric conditions on cortical morphology

    Get PDF
    It is increasingly recognized that multiple psychiatric conditions are underpinned by shared neural pathways, affecting similar brain systems. Here, we carried out a multiscale neural contextualization of shared alterations of cortical morphology across six major psychiatric conditions (autism spectrum disorder, attention deficit/hyperactivity disorder, major depression disorder, obsessive-compulsive disorder, bipolar disorder, and schizophrenia). Our framework cross-referenced shared morphological anomalies with respect to cortical myeloarchitecture and cytoarchitecture, as well as connectome and neurotransmitter organization. Pooling disease-related effects on MRI-based cortical thickness measures across six ENIGMA working groups, including a total of 28,546 participants (12,876 patients and 15,670 controls), we identified a cortex-wide dimension of morphological changes that described a sensory-fugal pattern, with paralimbic regions showing the most consistent alterations across conditions. The shared disease dimension was closely related to cortical gradients of microstructure as well as neurotransmitter axes, specifically cortex-wide variations in serotonin and dopamine. Multiple sensitivity analyses confirmed robustness with respect to slight variations in analytical choices. Our findings embed shared effects of common psychiatric conditions on brain structure in multiple scales of brain organization, and may provide insights into neural mechanisms of transdiagnostic vulnerability

    Novel Gyrification Networks Reveal Links with Psychiatric Risk Factors in Early Illness

    No full text
    : Adult gyrification provides a window into coordinated early neurodevelopment when disruptions predispose individuals to psychiatric illness. We hypothesized that the echoes of such disruptions should be observed within structural gyrification networks in early psychiatric illness that would demonstrate associations with developmentally relevant variables rather than specific psychiatric symptoms. We employed a new data-driven method (Orthogonal Projective Non-Negative Matrix Factorization) to delineate novel gyrification-based networks of structural covariance in 308 healthy controls. Gyrification within the networks was then compared to 713 patients with recent onset psychosis or depression, and at clinical high-risk. Associations with diagnosis, symptoms, cognition, and functioning were investigated using linear models. Results demonstrated 18 novel gyrification networks in controls as verified by internal and external validation. Gyrification was reduced in patients in temporal-insular, lateral occipital, and lateral fronto-parietal networks (pFDR < 0.01) and was not moderated by illness group. Higher gyrification was associated with better cognitive performance and lifetime role functioning, but not with symptoms. The findings demonstrated that gyrification can be parsed into novel brain networks that highlight generalized illness effects linked to developmental vulnerability. When combined, our study widens the window into the etiology of psychiatric risk and its expression in adulthood
    corecore