376 research outputs found

    Graphene-based ultrathin flat lenses

    Get PDF
    Flat lenses when compared to curved surface lenses have the advantages of being aberration free and they offer a compact design necessary for a myriad of electro-optical applications. In this paper we present flat and ultra-thin lenses based on graphene, the world’s thinnest known material. Monolayers and low number multilayers of graphene were fabricated into Fresnel zones to produce Fresnel zone plates which utilize the reflection and transmission properties of graphene for their operation. The working of the lens and their performance in the visible and terahertz regimes was analyzed computationally. Experimental measurements were also performed to characterize the lens in the visible regime and a good agreement was obtained with the simulations. The work demonstrates the principle of atom thick graphene-based lenses, with perspectives for ultra-compact integration.HB would like to thank The Leverhulme Trust for the research funding. QD is supported by Bureau of International Cooperation, Chinese Academy of Sciences (121D11KYSB20130013).This is the accepted manuscript. The final version is available from ACS at http://pubs.acs.org/doi/abs/10.1021/ph500197j

    11th German Conference on Chemoinformatics (GCC 2015) : Fulda, Germany. 8-10 November 2015.

    Get PDF

    Aspects of the breeding biology of Janaira gracilis Moreira & Pires (Crustacea, Isopoda, Asellota)

    Get PDF
    The biological aspects of incubating females of Janaira gracilis Mbreira & Pires, are described. The marsupium is formed by 4 pairs of oostegites arising from pereopods I-IV. The oostegites appear for the first time at the post-marsupial stage 7 (preparatory stage 1), growing successively at each moult until stage 9 (brooding stage 1), when they reach fully development. The sizes of the eggs increase with the body size of the females. The number of eggs, per female, is a linear function of the body volume, i.e., the fecundity increases with the female's body size. The number of eggs, embryos and juveniles decrease during the marsupial development. This decrease in brood number is higher between the last two marsupial stages, i.e., from stage C to D, than between the preceding marsupial stages. The average and overall brood mortality rate is of 38.95%.São descritos, no presente trabalho, vários aspectos relacionados à biologia de fêmeas grávidas de Janaira gracilis Moreira & Pires. O marsúpio é formado por 4 pares de oostégitos, que partem dos pereópodos I-IV. Os oostégitos, que surgem pela primeira vez no estádio 7 do desenvolvimento pós-marsupial (estágio preparatório 1), crescem nas sucessivas mudas, atingindo no estágio 9 (estágio reprodutor 1) seu pleno desenvolvimento. O tamanho dos ovos é proporcional ao tamanho das fêmeas. O número de ovos, por fêmeas, e proporcional ao volume das fêmeas, isto é, a fecundidade é mais elevada nos exemplares de maior comprimento. O número de ovos, embriões e jovens decresce com o desenvolvimento marsupial, sendo este decréscimo maior entre os dois últimos estágios marsupials (i.é., entre os estágios C e D) do que entre os estágios precedentes. A taxa média de mortalidade marsupial é de 38.95%

    Social Status Affects the Degree of Sex Difference in the Songbird Brain

    Get PDF
    It is thought that neural sex differences are functionally related to sex differences in the behaviour of vertebrates. A prominent example is the song control system of songbirds. Inter-specific comparisons have led to the hypothesis that sex differences in song nuclei size correlate with sex differences in song behaviour. However, only few species with similar song behaviour in both sexes have been investigated and not all data fit the hypothesis. We investigated the proposed structure – function relationship in a cooperatively breeding and duetting songbird, the white-browed sparrow weaver (Plocepasser mahali). This species lives in groups of 2–10 individuals, with a dominant breeding pair and male and female subordinates. While all male and female group members sing duet and chorus song, a male, once it has reached the dominant position in the group, sings an additional type of song that comprises a distinct and large syllable repertoire. Here we show for both types of male – female comparisons a male-biased sex difference in neuroanatomy of areas of the song production pathway (HVC and RA) that does not correlate with the observed polymorphism in song behaviour. In contrast, in situ hybridisation of mRNA of selected genes expressed in the song nucleus HVC reveals a gene expression pattern that is either similar between sexes in female – subordinate male comparisons or female-biased in female – dominant male comparisons. Thus, the polymorphic gene expression pattern would fit the sex- and status-related song behaviour. However, this implies that once a male has become dominant it produces the duetting song with a different neural phenotype than subordinate males

    AWAKE: A proton-driven plasma wakefield acceleration experiment at CERN

    Get PDF
    The AWAKE Collaboration has been formed in order to demonstrate proton-driven plasma wakefield acceleration for the first time. This acceleration technique could lead to future colliders of high energy but of a much reduced length when compared to proposed linear accelerators. The CERN SPS proton beam in the CNGS facility will be injected into a 10 m plasma cell where the long proton bunches will be modulated into significantly shorter micro bunches. These micro-bunches will then initiate a strong wakefield in the plasma with peak fields above 1 GV/m that will be harnessed to accelerate a bunch of electrons from about 20 MeV to the GeV scale within a few meters. The experimental program is based on detailed numerical simulations of beam and plasma interactions. The main accelerator components, the experimental area and infrastructure required as well as the plasma cell and the diagnostic equipment are discussed in detail. First protons to the experiment are expected at the end of 2016 and this will be followed by an initial three-four years experimental program. The experiment will inform future larger-scale tests of proton-driven plasma wakefield acceleration and applications to high energy colliders.info:eu-repo/semantics/publishedVersio

    AWAKE, the advanced proton driven plasma wakefield acceleration experiment at CERN

    Get PDF
    The Advanced Proton Driven Plasma Wakefield Acceleration Experiment (AWAKE) aims at studying plasma wakefield generation and electron acceleration driven by proton bunches. It is a proof-of-principle R&D experiment at CERN and the world׳s first proton driven plasma wakefield acceleration experiment. The AWAKE experiment will be installed in the former CNGS facility and uses the 400 GeV/c proton beam bunches from the SPS. The first experiments will focus on the self-modulation instability of the long (rms ~12 cm) proton bunch in the plasma. These experiments are planned for the end of 2016. Later, in 2017/2018, low energy (~15 MeV) electrons will be externally injected into the sample wakefields and be accelerated beyond 1 GeV. The main goals of the experiment will be summarized. A summary of the AWAKE design and construction status will be presented

    Unbinned Deep Learning Jet Substructure Measurement in High Q2Q^2 ep collisions at HERA

    Get PDF
    The radiation pattern within high energy quark- and gluon-initiated jets (jet substructure) is used extensively as a precision probe of the strong force as well as an environment for optimizing event generators with numerous applications in high energy particle and nuclear physics. Looking at electron-proton collisions is of particular interest as many of the complications present at hadron colliders are absent. A detailed study of modern jet substructure observables, jet angularities, in electron-proton collisions is presented using data recorded using the H1 detector at HERA. The measurement is unbinned and multi-dimensional, using machine learning to correct for detector effects. All of the available reconstructed object information of the respective jets is interpreted by a graph neural network, achieving superior precision on a selected set of jet angularities. Training these networks was enabled by the use of a large number of GPUs in the Perlmutter supercomputer at Berkeley Lab. The particle jets are reconstructed in the laboratory frame, using the kTk_{\mathrm{T}} jet clustering algorithm. Results are reported at high transverse momentum transfer Q2>150Q^2>150 GeV2{}^2, and inelasticity 0.2<y<0.70.2 < y < 0.7. The analysis is also performed in sub-regions of Q2Q^2, thus probing scale dependencies of the substructure variables. The data are compared with a variety of predictions and point towards possible improvements of such models.Comment: 33 pages, 10 figures, 8 table
    corecore