56 research outputs found
Internalisation Theory and outward direct investment by emerging market multinationals
The rise of multinational enterprises from emerging countries (EMNEs) poses an important test for theories of the multinational enterprise such as internalisation theory. It has been contended that new phenomena need new theory. This paper proposes that internalisation theory is appropriate to analyse EMNEs. This paper examines four approaches to EMNEs—international investment strategies, domestic market imperfections, international corporate networks and domestic institutions—and three case studies—Chinese outward FDI, Indian foreign acquisitions and investment in tax havens—to show the enduring relevance and predictive power of internalisation theory. This analysis encompasses many other approaches as special cases of internalisation theory. The use of internalisation theory to analyse EMNEs is to be commended, not only because of its theoretical inclusivity, but also because it has the ability to connect and to explain seemingly desperate phenomena
Reduced diversity and increased virulence-gene carriage in intestinal enterobacteria of coeliac children
<p>Abstract</p> <p>Background</p> <p>Coeliac disease is an immune-mediated enteropathology triggered by the ingestion of cereal gluten proteins. This disorder is associated with imbalances in the composition of the gut microbiota that could be involved in its pathogenesis. The aim of the present study was to determine whether intestinal <it>Enterobacteriaceae </it>populations of active and non-active coeliac patients and healthy children differ in diversity and virulence-gene carriage, so as to establish a possible link between the pathogenic potential of enterobacteria and the disease.</p> <p>Methods</p> <p><it>Enterobacteriaceae </it>clones were isolated on VRBD agar from faecal samples of 31 subjects (10 active coeliac patients, 10 symptom-free coeliac patients and 11 healthy controls) and identified at species level by the API 20E system. <it>Escherichia coli </it>clones were classified into four phylogenetic groups A, B1, B2 and D and the prevalence of eight virulence-associated genes (type-1 fimbriae [<it>fimA</it>], P fimbriae [<it>papC</it>], S fimbriae [<it>sfaD/E</it>], Dr haemagglutinin [<it>draA</it>], haemolysin [<it>hlyA</it>], capsule K1 [<it>neuB</it>], capsule K5 [<it>KfiC</it>] and aerobactin [<it>iutA</it>]) was determined by multiplex PCR.</p> <p>Results</p> <p>A total of 155 <it>Enterobacteriaceae </it>clones were isolated. Non-<it>E. coli </it>clones were more commonly isolated in healthy children than in coeliac patients. The four phylogenetic <it>E. coli </it>groups were equally distributed in healthy children, while in both coeliac patients most commensal isolates belonged to group A. Within the virulent groups, B2 was the most prevalent in active coeliac disease children, while D was the most prevalent in non-active coeliac patients. <it>E coli </it>clones of the virulent phylogenetic groups (B2+D) from active and non-active coeliac patients carried a higher number of virulence genes than those from healthy individuals. Prevalence of P fimbriae (<it>papC</it>), capsule K5 (<it>sfaD/E</it>) and haemolysin (<it>hlyA</it>) genes was higher in <it>E. coli </it>isolated from active and non-active coeliac children than in those from control subjects.</p> <p>Conclusion</p> <p>This study has demonstrated that virulence features of the enteric microbiota are linked to coeliac disease.</p
Signature-Tagged Mutagenesis in a Chicken Infection Model Leads to the Identification of a Novel Avian Pathogenic Escherichia coli Fimbrial Adhesin
The extraintestinal pathogen, avian pathogenic E. coli (APEC), known to cause systemic infections in chickens, is responsible for large economic losses in the poultry industry worldwide. In order to identify genes involved in the early essential stages of pathogenesis, namely adhesion and colonization, Signature-tagged mutagenesis (STM) was applied to a previously established lung colonization model of infection by generating and screening a total of 1,800 mutants of an APEC strain IMT5155 (O2:K1:H5; Sequence type complex 95). The study led to the identification of new genes of interest, including two adhesins, one of which coded for a novel APEC fimbrial adhesin (Yqi) not described for its role in APEC pathogenesis to date. Its gene product has been temporarily designated ExPEC Adhesin I (EA/I) until the adhesin-specific receptor is identified. Deletion of the ExPEC adhesin I gene resulted in reduced colonization ability by APEC strain IMT5155 both in vitro and in vivo. Furthermore, complementation of the adhesin gene restored its ability to colonize epithelial cells in vitro. The ExPEC adhesin I protein was successfully expressed in vitro. Electron microscopy of an afimbriate strain E. coli AAEC189 over-expressed with the putative EA/I gene cluster revealed short fimbrial-like appendages protruding out of the bacterial outer membrane. We observed that this adhesin coding gene yqi is prevalent among extraintestinal pathogenic E. coli (ExPEC) isolates, including APEC (54.4%), uropathogenic E. coli (UPEC) (65.9%) and newborn meningitic E. coli (NMEC) (60.0%), and absent in all of the 153 intestinal pathogenic E. coli strains tested, thereby validating the designation of the adhesin as ExPEC Adhesin I. In addition, prevalence of EA/I was most frequently associated with the B2 group of the EcoR classification and ST95 complex of the multi locus sequence typing (MLST) scheme, with evidence of a positive selection within this highly pathogenic complex. This is the first report of the newly identified and functionally characterized ExPEC adhesin I and its significant role during APEC infection in chickens
Obscured phylogeny and possible recombinational dormancy in Escherichia coli
<p>Abstract</p> <p>Background</p> <p><it>Escherichia coli </it>is one of the best studied organisms in all of biology, but its phylogenetic structure has been difficult to resolve with current data and analytical techniques. We analyzed single nucleotide polymorphisms in chromosomes of representative strains to reconstruct the topology of its emergence.</p> <p>Results</p> <p>The phylogeny of <it>E. coli </it>varies according to the segment of chromosome analyzed. Recombination between extant <it>E. coli </it>groups is largely limited to only three intergroup pairings.</p> <p>Conclusions</p> <p>Segment-dependent phylogenies most likely are legacies of a complex recombination history. However, <it>E. coli </it>are now in an epoch in which they no longer broadly share DNA. Using the definition of species as organisms that freely exchange genetic material, this recombinational dormancy could reflect either the end of <it>E. coli </it>as a species, or herald the coalescence of <it>E. coli </it>groups into new species.</p
Role of Intraspecies Recombination in the Spread of Pathogenicity Islands within the Escherichia coli Species
Horizontal gene transfer is a key step in the evolution of bacterial pathogens. Besides phages and plasmids, pathogenicity islands (PAIs) are subjected to horizontal transfer. The transfer mechanisms of PAIs within a certain bacterial species or between different species are still not well understood. This study is focused on the High-Pathogenicity Island (HPI), which is a PAI widely spread among extraintestinal pathogenic Escherichia coli and serves as a model for horizontal transfer of PAIs in general. We applied a phylogenetic approach using multilocus sequence typing on HPI-positive and -negative natural E. coli isolates representative of the species diversity to infer the mechanism of horizontal HPI transfer within the E. coli species. In each strain, the partial nucleotide sequences of 6 HPI–encoded genes and 6 housekeeping genes of the genomic backbone, as well as DNA fragments immediately upstream and downstream of the HPI were compared. This revealed that the HPI is not solely vertically transmitted, but that recombination of large DNA fragments beyond the HPI plays a major role in the spread of the HPI within E. coli species. In support of the results of the phylogenetic analyses, we experimentally demonstrated that HPI can be transferred between different E. coli strains by F-plasmid mediated mobilization. Sequencing of the chromosomal DNA regions immediately upstream and downstream of the HPI in the recipient strain indicated that the HPI was transferred and integrated together with HPI–flanking DNA regions of the donor strain. The results of this study demonstrate for the first time that conjugative transfer and homologous DNA recombination play a major role in horizontal transfer of a pathogenicity island within the species E. coli
Escherichia coli Bacteriocins: Antimicrobial Efficacy and Prevalence among Isolates from Patients with Bacteraemia
Bacteriocins are antimicrobial peptides generally active against bacteria closely related to the producer. Escherichia coli produces two types of bacteriocins, colicins and microcins. The in vitro efficacy of isolated colicins E1, E6, E7, K and M, was assessed against Escherichia coli strains from patients with bacteraemia of urinary tract origin. Colicin E7 was most effective, as only 13% of the tested strains were resistant. On the other hand, 32%, 33%, 43% and 53% of the tested strains exhibited resistance to colicins E6, K, M and E1. Moreover, the inhibitory activity of individual colicins E1, E6, E7, K and M and combinations of colicins K, M, E7 and E1, E6, E7, K, M were followed in liquid broth for 24 hours. Resistance against individual colicins developed after 9 hours of treatment. On the contrary, resistance development against the combined action of 5 colicins was not observed. One hundred and five E. coli strains from patients with bacteraemia were screened by PCR for the presence of 5 colicins and 7 microcins. Sixty-six percent of the strains encoded at least one bacteriocin, 43% one or more colicins, and 54% one or more microcins. Microcins were found to co-occur with toxins, siderophores, adhesins and with the Toll/Interleukin-1 receptor domain-containing protein involved in suppression of innate immunity, and were significantly more prevalent among strains from non-immunocompromised patients. In addition, microcins were highly prevalent among non-multidrug-resistant strains compared to multidrug-resistant strains. Our results indicate that microcins contribute to virulence of E. coli instigating bacteraemia of urinary tract origin
Fate of the H-NS–Repressed bgl Operon in Evolution of Escherichia coli
In the enterobacterial species Escherichia coli and Salmonella enterica, expression of horizontally acquired genes with a higher than average AT content is repressed by the nucleoid-associated protein H-NS. A classical example of an H-NS–repressed locus is the bgl (aryl-β,D-glucoside) operon of E. coli. This locus is “cryptic,” as no laboratory growth conditions are known to relieve repression of bgl by H-NS in E. coli K12. However, repression can be relieved by spontaneous mutations. Here, we investigated the phylogeny of the bgl operon. Typing of bgl in a representative collection of E. coli demonstrated that it evolved clonally and that it is present in strains of the phylogenetic groups A, B1, and B2, while it is presumably replaced by a cluster of ORFans in the phylogenetic group D. Interestingly, the bgl operon is mutated in 20% of the strains of phylogenetic groups A and B1, suggesting erosion of bgl in these groups. However, bgl is functional in almost all B2 isolates and, in approximately 50% of them, it is weakly expressed at laboratory growth conditions. Homologs of bgl genes exist in Klebsiella, Enterobacter, and Erwinia species and also in low GC-content Gram-positive bacteria, while absent in E. albertii and Salmonella sp. This suggests horizontal transfer of bgl genes to an ancestral Enterobacterium. Conservation and weak expression of bgl in isolates of phylogenetic group B2 may indicate a functional role of bgl in extraintestinal pathogenic E. coli
Mainstreams of Horizontal Gene Exchange in Enterobacteria: Consideration of the Outbreak of Enterohemorrhagic E. coli O104:H4 in Germany in 2011
Escherichia coli O104:H4 caused a severe outbreak in Europe in 2011. The strain TY-2482 sequenced from this outbreak allowed the discovery of its closest relatives but failed to resolve ways in which it originated and evolved. On account of the previous statement, may we expect similar upcoming outbreaks to occur recurrently or spontaneously in the future? The inability to answer these questions shows limitations of the current comparative and evolutionary genomics methods.status: publishe
Conserved expression and functions of PDE4 in rodent and human heart
PDE4 isoenzymes are critical in the control of cAMP signaling in rodent cardiac myocytes. Ablation of PDE4 affects multiple key players in excitation–contraction coupling and predisposes mice to the development of heart failure. As little is known about PDE4 in human heart, we explored to what extent cardiac expression and functions of PDE4 are conserved between rodents and humans. We find considerable similarities including comparable amounts of PDE4 activity expressed, expression of the same PDE4 subtypes and splicing variants, anchoring of PDE4 to the same subcellular compartments and macromolecular signaling complexes, and downregulation of PDE4 activity and protein in heart failure. The major difference between the species is a fivefold higher amount of non-PDE4 activity in human hearts compared to rodents. As a consequence, the effect of PDE4 inactivation is different in rodents and humans. PDE4 inhibition leads to increased phosphorylation of virtually all PKA substrates in mouse cardiomyocytes, but increased phosphorylation of only a restricted number of proteins in human cardiomyocytes. Our findings suggest that PDE4s have a similar role in the local regulation of cAMP signaling in rodent and human heart. However, inhibition of PDE4 has ‘global’ effects on cAMP signaling only in rodent hearts, as PDE4 comprises a large fraction of the total cardiac PDE activity in rodents but not in humans. These differences may explain the distinct pharmacological effects of PDE4 inhibition in rodent and human hearts
- …