162 research outputs found
Multiscale Framework for Modeling and Analyzing Light Interception by Trees
International audienceThis paper presents a new framework for modeling light interception by isolated trees which makes it possible to analyze the influence of structural tree organization on light capture. The framework is based on a multiscale representation of the plant organization. Tree architecture is decomposed into a collection of components representing clusters of leaves at different scales in the tree crown. The components are represented by porous envelopes automatically generated as convex hulls containing components at a finer scale. The component opacity is defined as the interception probability of a light beam going through its envelope. The role of tree organization on light capture was assessed by running different scenarii where the components at any scale were either randomly distributed or localized to their actual 3D position. The modeling framework was used with three-dimensional digitized fruit trees, namely peach and mango trees. A sensitivity analysis was carried out to assess the effect of the spatial organization in each scale on light interception. This modeling framework makes it possible to identify a level of tree description that achieves a good compromise between the amount of measurement required to describe the tree architecture and the quality of the resulting light interception model
Assessment of the three-dimensional architecture of walnut trees using digitising.
A method for the measurement of the three-dimensional (3D) architecture of trees was applied to describe two 20-year-old walnut trees, one of them is a timber tree while the other is a fruit tree. The method works at the shoot level and simultaneously describes the plant topology, the plant geometry and the shoot morphology. The method uses a 3D digitiser (3SPACE® FASTRAK®, Polhemus Inc.) associated with software DiplAmi designed for digitiser control and data acquisition management. Plant images may be reconstructed from the data set by using the ray tracing software POV-Ray. Visual comparison between photographs of the walnut trees and images synthesised from digitising was satisfactory. Distribution of basal shoot diameter, as well as leaf area and fruit distributions for both the timber and the fruit tree were non-uniformly distributed in the crown volume. Gradients were likely to be related to the light distribution within the tree. This is in agreement with previous experimental results on several tree species, and also with the predictions of tree architecture models based on light-vegetation interactions
Modeling of light transmission under heterogeneous forest canopy: model description and validation
International audienceGrowth and survival of regeneration saplings and understorey vegetation development is closely related to light available below the forest trees. Manipulating the forest structure by thinning adult trees is a major tool to control light transmission to the understorey. The transmission is related to the attenuation of light which is usually estimated with the Beer-Lambert law assuming homogeneous foliage within the canopy. However forest canopies are far from homogeneous, which requires models that can take into account the effect of clumping between and within trees. In this work we present a model that can be readily used with both coarse or detailed parameterization to generate any type of stand and compute the distribution of light transmitted below the canopy. To evaluate the accuracy of the model, we compared model results with field measurements from several stands of Pinus sylvestris L. in the French Massif Central.no abstrac
Space occupation by tree crowns obeys fractals laws: evidence from 3D digitized plants
International audienceno abstrac
A double-digitising method for building 3D virtual trees with non-planar leaves: application to the morphology and light-capture properties of young beech trees (Fagus sylvatica)
We developed a double-digitising method combining a hand-held electromagnetic digitizer and a non-contact 3D laser scanner. The former was used to record the positions of all leaves in a tree and the orientation angles of their lamina. The latter served to obtain the morphology of the leaves sampled in the tree. As the scanner outputs a cloud of points, software was developed to reconstruct non-planar (NP) leaves composed of triangles, and to compute numerical shape parameters: midrib curvature, torsion and transversal curvature of the lamina. The combination of both methods allowed construction of 3D virtual trees with NP leaves. The method was applied to young beech trees (Fagus sylvatica L.) from different sunlight environments (from 1 to 100% incident light) in a forest in central France. Leaf morphology responded to light availability, with a more bent shape in well-lit leaves. Light interception at the leaf scale by NP leaves decreased from 4 to 10% for shaded and sunlit leaves compared with planar leaves. At the tree scale, light interception by trees made of NP leaves decreased by 1 to 3% for 100% to 1% light, respectively
ALEA: A software for integrating analysis and simulation tools for 3D architecture and ecophysiology
International audienceno abstrac
A model for simulating structure-function relationships in walnut tree growth processes.
An ecophysiological growth process model, called INCA, for simulating the growth and development of a young walnut tree (Juglans regia L.) during three or four years, is presented. This tool, currently under development, aims at integrating architectural and physiological knowledge of the processes involved, in order to give a more rational understanding of the pruning operation. The model describes a simple three-dimensional representation of tree crown, solar radiation interception, photosynthesis, respiration, growth and partitioning of assimilates to leaves, stems, branches and roots. It supports the hypothesis that the tree grows as a collection of semiautonomous, interacting organs that compete for resources, based on daily sink strengths and proximity to sources. The actual growth rate of organs is not predetermined by empirical data, but reflects the pattern of available resources. The major driving variables are solar radiation, temperature, topological, geometrical and physiological factors. Outputs are hourly and daily photosynthate production and respiration, daily dimensional growth, starch storage, biomass production and total number of different types of organ. The user can interact or override any or all of the input variables to examine the effects of such changes on photosynthate production and growth. Within INCA, the tree entities and the surrounding environment are structured in a frame-based representation whereas the processes are coded in a rule-based language. The simulation mechanism is primarily based on the rule chaining capabilities of an inference engine
Does shade improve light interception efficiency? A comparison among seedlings from shade-tolerant and -intolerant temperate deciduous tree species
• Here, we tested two hypotheses: shading increases light interception efficiency (LIE) of broadleaved tree seedlings, and shade-tolerant species exhibit larger LIEs than do shade-intolerant ones. The impact of seedling size was taken into account to detect potential size-independent effects on LIE. LIE was defined as the ratio of mean light intercepted by leaves to light intercepted by a horizontal surface of equal area. • Seedlings from five species differing in shade tolerance (Acer saccharum, Betula alleghaniensis, A. pseudoplatanus, B. pendula, Fagus sylvatica) were grown under neutral shading nets providing 36, 16 and 4% of external irradiance. Seedlings (1- and 2-year-old) were three-dimensionally digitized, allowing calculation of LIE. • Shading induced dramatic reduction in total leaf area, which was lowest in shade-tolerant species in all irradiance regimes. Irradiance reduced LIE through increasing leaf overlap with increasing leaf area. There was very little evidence of significant size-independent plasticity of LIE. • No relationship was found between the known shade tolerance of species and LIE at equivalent size and irradiance
A method for describing the canopy architecture of coppice poplar with allometric relationships
57 ref.absen
- …