83 research outputs found

    Production of recombinant bacteriocin divercin V41 by high cell density Escherichia coli batch and fed-batch cultures

    Get PDF
    To increase the yield of heterologous production of the class II bacteriocin DvnRV41 with Escherichia coli Origami (DE3) (pLysS/pCR03), induction of bacteriocin gene expression was optimized by varying the inducer isopropyl ÎČ-d-thiogalactopyranoside (IPTG) concentration (0-2mM), and controlled batch and fed-batch cultures were tested on a 2-L scale. A concentration of 0.5mM IPTG was found to be optimal for cell growth and bacteriocin production. Shake flask cultivation of E. coli Origami (DE3) (pLysS/pCR03) gave biomass and bacteriocin yields of 1.54 ± 0.06g cdw/l and 18 ± 1mg DvnRV41/l, respectively. Biomass (2.70 ± 0.06 and 6.8 ± 0.6g cdw/l, respectively) and bacteriocin yields (30 and 74mg DvnRV41 per liter, respectively) were both increased with batch and fed-batch compared to shake flask cultures. Bacteriocin yields reported in this study are among the highest published for other heterologous expression systems in shake flask

    Carnobacterium: positive and negative effects in the environment and in foods

    Get PDF
    The genus Carnobacterium contains nine species, but only C. divergens and C. maltaromaticum are frequently isolated from natural environments and foods. They are tolerant to freezing/thawing and high pressure and able to grow at low temperatures, anaerobically and with increased CO2 concentrations. They metabolize arginine and various carbohydrates, including chitin, and this may improve their survival in the environment. Carnobacterium divergens and C. maltaromaticum have been extensively studied as protective cultures in order to inhibit growth of Listeria monocytogenes in fish and meat products. Several carnobacterial bacteriocins are known, and parameters that affect their production have been described. Currently, however, no isolates are commercially applied as protective cultures. Carnobacteria can spoil chilled foods, but spoilage activity shows intraspecies and interspecies variation. The responsible spoilage metabolites are not well characterized, but branched alcohols and aldehydes play a partial role. Their production of tyramine in foods is critical for susceptible individuals, but carnobacteria are not otherwise human pathogens. Carnobacterium maltaromaticum can be a fish pathogen, although carnobacteria are also suggested as probiotic cultures for use in aquaculture. Representative genome sequences are not yet available, but would be valuable to answer questions associated with fundamental and applied aspects of this important genus

    Polynucleotide phosphorylase has an impact on cell biology of Campylobacter jejuni

    Get PDF
    Polynucleotide phosphorylase (PNPase), encoded by the pnp gene, is known to degrade mRNA, mediating post-transcriptional regulation and may affect cellular functions. The role of PNPase is pleiotropic. As orthologs of the two major ribonucleases (RNase E and RNase II) of Escherichia coli are missing in the Campylobacter jejuni genome, in the current study the focus has been on the C. jejuni ortholog of PNPase. The effect of PNPase mutation on C. jejuni phenotypes and proteome was investigated. The inactivation of the pnp gene reduced significantly the ability of C. jejuni to adhere and to invade Ht-29 cells. Moreover, the pnp mutant strain exhibited a decrease in C. jejuni swimming ability and chick colonization. To explain effects of PNPase on C. jejuni 81-176 phenotype, the proteome of the pnp mutant and parental strains were compared. Overall, little variation in protein production was observed. Despite the predicted role of PNPase in mRNA regulation, the pnp mutation did not induce profound proteomic changes suggesting that other ribonucleases in C. jejuni might ensure this biological function in the absence of PNPase. Nevertheless, synthesis of proteins which are involved in virulence (LuxS, PEB3), motility (N-acetylneuraminic acid synthetase), stress-response (KatA, DnaK, Hsp90), and translation system (EF-Tu, EF-G) were modified in the pnp mutant strain suggesting a more specific role of PNPase in C. jejuni. In conclusion, PNPase deficiency induces limited but important consequences on C. jejuni biology that could explain swimming limitation, chick colonization delay, and the decrease of cell adhesion/invasion ability

    Complete Chromosome Sequence of Carnobacterium maltaromaticum LMA 28

    Get PDF
    Within the lactic acid bacterium genus Carnobacterium, Carnobacterium maltaromaticum is one of the most frequently isolated species from natural environments and food. It potentially plays a major role in food product biopreservation. We report here on the 3.649-Mb chromosome sequence of C. maltaromaticum LMA 28, which was isolated from ripened soft cheese

    Citrate lyases of lactic acid bacteria

    No full text
    • 

    corecore