18 research outputs found

    Plasma glial fibrillary acidic protein detects Alzheimer pathology and predicts future conversion to Alzheimer dementia in patients with mild cognitive impairment.

    Get PDF
    INTRODUCTION: Plasma glial fibrillary acidic protein (GFAP) is a marker of astroglial activation and astrocytosis. We assessed the ability of plasma GFAP to detect Alzheimer's disease (AD) pathology in the form of AD-related amyloid-β (Aβ) pathology and conversion to AD dementia in a mild cognitive impairment (MCI) cohort. METHOD: One hundred sixty MCI patients were followed for 4.7 years (average). AD pathology was defined using cerebrospinal fluid (CSF) Aβ42/40 and Aβ42/total tau (T-tau). Plasma GFAP was measured at baseline and follow-up using Simoa technology. RESULTS: Baseline plasma GFAP could detect abnormal CSF Aβ42/40 and CSF Aβ42/T-tau with an AUC of 0.79 (95% CI 0.72-0.86) and 0.80 (95% CI 0.72-0.86), respectively. When also including APOE ε4 status as a predictor, the accuracy of the model to detect abnormal CSF Aβ42/40 status improved (AUC = 0.86, p = 0.02). Plasma GFAP predicted subsequent conversion to AD dementia with an AUC of 0.84 (95% CI 0.77-0.91), which was not significantly improved when adding APOE ε4 or age as predictors to the model. Longitudinal GFAP slopes for Aβ-positive and MCI who progressed to dementia (AD or other) were significantly steeper than those for Aβ-negative (p = 0.007) and stable MCI (p < 0.0001), respectively. CONCLUSION: Plasma GFAP can detect AD pathology in patients with MCI and predict conversion to AD dementia

    Insulin-like growth factors and related proteins in plasma and cerebrospinal fluids of HIV-positive individuals

    Get PDF
    BACKGROUND: Clinically significant dysregulation of the insulin-like growth factor (IGF) family proteins occurs in HIV-infected individuals, but the details including whether the deficiencies in IGFs contribute to CNS dysfunction are unknown. METHODS: We measured the levels of IGF1, IGF2, IGFBP1, IGFBP2, and IGF2 receptor (IGF2R) in matching plasma and cerebrospinal fluid (CSF) samples of 107 HIV+ individuals from CNS HIV Antiretroviral Therapy Effects Research (CHARTER) and analyzed their associations with demographic and disease characteristics, as well as levels of several soluble inflammatory mediators (TNFα, IL-6, IL-10, IL-17, IP-10, MCP-1, and progranulin). We also determined whether IGF1 or IGF2 deficiency is associated with HIV-associated neurocognitive disorder (HAND) and whether the levels of soluble IGF2R (an IGF scavenging receptor, which we also have found to be a cofactor for HIV infection in vitro) correlate with HIV viral load (VL). RESULTS: There was a positive correlation between the levels of IGF-binding proteins (IGFBPs) and those of inflammatory mediators: between plasma IGFBP1 and IL-17 (β coefficient 0.28, P = 0.009), plasma IGFBP2 and IL-6 (β coefficient 0.209, P = 0.021), CSF IGFBP1 and TNFα (β coefficient 0.394, P < 0.001), and CSF IGFBP2 and TNF-α (β coefficient 0.14, P < 0.001). As IGFBPs limit IGF availability, these results suggest that inflammation is a significant factor that modulates IGF protein expression/availability in the setting of HIV infection. However, there was no significant association between HAND and the reduced levels of plasma IGF1, IGF2, or CSF IGF1, suggesting a limited power of our study. Interestingly, plasma IGF1 was significantly reduced in subjects on non-nucleoside reverse transcriptase inhibitor-based antiretroviral therapy (ART) compared to protease inhibitor-based therapy (174.1 ± 59.8 vs. 202.8 ± 47.3 ng/ml, P = 0.008), suggesting a scenario in which ART regimen-related toxicity can contribute to HAND. Plasma IGF2R levels were positively correlated with plasma VL (β coefficient 0.37, P = 0.021) and inversely correlated with current CD4+ T cell counts (β coefficient −0.04, P = 0.021), supporting our previous findings in vitro. CONCLUSIONS: Together, these results strongly implicate (1) an inverse relationship between inflammation and IGF growth factor availability and the contribution of IGF deficiencies to HAND and (2) the role of IGF2R in HIV infection and as a surrogate biomarker for HIV VL. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1186/s12974-015-0288-6) contains supplementary material, which is available to authorized users

    Increased blood-brain barrier permeability is associated with dementia and diabetes but not amyloid pathology or APOE genotype

    Get PDF
    Blood-brain barrier (BBB) dysfunction might be an important component of many neurodegenerative disorders. In this study, we investigated its role in dementia using large clinical cohorts. The cerebrospinal fluid (CSF)/plasma albumin ratio (Qalb), an indicator of BBB (and blood-CSF barrier) permeability, was measured in a total of 1015 individuals. The ratio was increased in patients with Alzheimer's disease, dementia with Lewy bodies or Parkinson's disease dementia, subcortical vascular dementia, and frontotemporal dementia compared with controls. However, this measure was not changed during preclinical or prodromal Alzheimer's disease and was not associated with amyloid positron emission tomography or APOE genotype. The Qalb was increased in diabetes mellitus and correlated positively with CSF biomarkers of angiogenesis and endothelial dysfunction (vascular endothelial growth factor, intracellular adhesion molecule 1, and vascular cell adhesion molecule 1). In healthy elderly, high body mass index and waist-hip ratio predicted increased Qalb 20 years later. In summary, BBB permeability is increased in major dementia disorders but does not relate to amyloid pathology or APOE genotype. Instead, BBB impairment may be associated with diabetes and brain microvascular damage

    Peripheral vascular disease

    No full text
    Peripheral vascular disease is common with varying degrees of severity. It is a marker of systemic vascular disease and is associated with increased cardiovascular and overall mortality. There are numerous modifiable and non-modifiable risk factors associated with peripheral vascular disease. In this chapter we discuss the aetiology, investigation and treatment of peripheral vascular disease using an evidence-based approach
    corecore