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Abstract Blood proteins and their complexes have become the focus of a great deal of interest in the context
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of their potential as biomarkers of Alzheimer’s disease (AD). We used a SOMAscan assay for quan-
tifying 1001 proteins in blood samples from 331 AD, 211 controls, and 149 mild cognitive impaired
(MCI) subjects. The strongest associations of protein levels with AD outcomes were prostate-specific
antigen complexed to a1-antichymotrypsin (AD diagnosis), pancreatic prohormone (AD diagnosis,
left entorhinal cortex atrophy, and left hippocampus atrophy), clusterin (rate of cognitive decline),
and fetuin B (left entorhinal atrophy). Multivariate analysis found that a subset of 13 proteins pre-
dicted AD with an accuracy of area under the curve of 0.70. Our replication of previous findings pro-
vides further evidence that levels of these proteins in plasma are truly associated with AD. The newly
identified proteins could be potential biomarkers and are worthy of further investigation.
� 2014 The Alzheimer’s Association. Open access under CC BY-NC-ND license.
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1. Introduction

Although much progress has been made in understanding
the molecular pathology of Alzheimer’s disease (AD), the
treatments currently available only temporarily alleviate
some symptoms and do not modify pathology. The use of bio-
markers to identify individuals with AD before the appear-
ance of clinical symptoms, the so-called predementia phase
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of the disease, will be essential to the development of drugs
for early intervention [1]. Additionally, if sufficiently powered
and inexpensive, a biomarker could potentially be used as part
of a screening program for at-risk elderly people [2].

Cerebrospinal fluid (CSF) biomarkers such as increased
tau and decreased levels of amyloid-b (Ab1-42) have been
found to correlate with postmortem AD pathology [3,4].
These measurements together not only differentiate AD
from normal elderly controls with high accuracy but can
also predict which subjects with mild cognitive impairment
(MCI) are likely to progress to AD within 5 years [5]. How-
ever, lumbar puncture to collect CSF is a relatively invasive
 license.
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procedure, which may not be suitable for use in large-scale
trials or for screening populations. Similarly, positron emis-
sion tomography imaging of amyloid burden in the brain cor-
relates with clinical diagnosis of AD, Ab neuropathology at
autopsy [3,4,6], and CSFAb1-42 levels [7–10] but is equally
impractical for use in large groups of frail elderly patients
and is restricted to specialist centers.

In contrast, blood is a highly accessible tissue, making it
an attractive target for development of a biomarker.
Although AD is a disease of the brain, it is increasingly
accepted that there is communication between the brain
and the periphery, and thus several studies, including those
from our own group, have investigated AD and/or MCI-
related protein changes in blood plasma using mass spec-
trometry and antibody capture technologies [11–20].

In this study, we screened plasma from 691 individuals us-
ing the SOMAscan (SomaLogic, Inc, Boulder, CO, USA)
Multiplexed Proteomic technology for proteins involved in
AD pathology. Each of the 1001 measured proteins was
tested for association with the following AD outcome mea-
sures: clinical diagnosis (case and control), conversion
fromMCI to AD, rate of cognitive decline, and brain atrophy
(left/right hippocampal volume and left/right entorhinal cor-
tex volume). We report results from the largest multiplexed
plasma protein study to date for AD markers and as such
describe a number of novel protein associations as well as
validate a number of previously identified AD biomarkers.
2. Methods

2.1. Subjects

We obtained protein measures for 691 subjects (211 con-
trols, 106 MCI patients, 43 MCI patients converting to AD
within a year, and 331 AD patients). Of these subjects, 415
(110 controls, 66 MCI patients, 43 MCI patients converting
to AD, and 196 AD patients) were recruited from the Euro-
pean Union–funded AddNeuroMed (ANM) biomarker study
[14,21] and 276 subjects (101 controls, 40 MCI, and 135
AD) were recruited from the Maudsley and King’s
Healthcare Partners Dementia Case Register (DCR), which
incorporates the Alzheimer’s Research UK (ARUK) cohort
[13]. Informed consent was obtained for all subjects accord-
ing to the Declaration of Helsinki (1991), and protocols and
procedures were approved by the relevant local ethical com-
mittees at each site. All subjects were assessed with a stan-
dardized assessment protocol including an informant
interview for diagnosis and cognitive assessment such as
the Mini-Mental State Examination (MMSE) together with
standardized assessment of function, behavior, and dementia
severity as previously reported [13,19,20].

2.2. Samples

At the time of assessment, all blood samples were drawn
by venipuncture and collected into EDTA glass tubes.
Subjects were required to fast for at least 2 hours before
collection. ARUK blood samples were centrifuged at
3000 rpm at 4�C for 8 minutes, and ANM and DCR samples
were centrifuged with at 2000 g for 10 minutes at 4�C. All
samples were centrifuged within approximately 2 hours of
collection. Plasma supernatant was collected, divided into
aliquots, and frozen at 280�C until further use.
2.3. Protein measures

Proteins were measured using a Slow Off-rate Modified
Aptamer (SOMAmer)–based capture array called “SOMAs-
can” (SomaLogic, Inc). This approach uses chemically
modified nucleotides to transform a protein signal to a nucle-
otide signal that can be quantified using relative florescence
on microarrays. Therefore, all gathered SOMAscan mea-
sures are relative fluorescence units. This assay has been
shown to have a median intra- and interrun coefficient of
variation of w5%. The median lower and upper limits of
quantification were w1 pM and w1.5 nM, respectively, in
buffer andw2.95 pM andw1.5 nM, respectively, for a sub-
set of the SOMAmers in plasma; full details are given in the
article by Gold et al. [22].

Quality control is performed at the sample and SOMAmer
level and involves the use of control SOMAmers on the
microarray and calibration samples. At the sample level, hy-
bridization controls on the microarray are used to monitor
sample-by-sample variability in hybridization, whereas the
median signal over all SOMAmers is used to monitor overall
technical variability. The resulting hybridization scale factor
and median scale factor are used to normalize data across
samples. The acceptance criteria for these values are 0.4 to
2.5, based on historic trends in these values. SOMAmer-by-
SOMAmer calibration occurs through the repeated measure-
ment of calibration samples; these samples are of the same
matrix as the study samples and are used to monitor repeat-
ability and batch-to-batch variability. Historic values for these
calibrator samples for each SOMAmer are used to generate a
calibration scale factor. The acceptance criterion for calibrator
scale factors is that 95% of SOMAmers must have a calibra-
tion scale factor within 60.4 of the median.

The assay required 8 mL of plasma from each sample. A
single assay was used per plasma sample, and thus, no tech-
nical replicates were performed. Additionally, the samples
were run in two batches ensuring an even mix of diagnosis
groups in each batch. All measurements were log2 trans-
formed. Seven outliers, identified using principal component
analysis, were removed from the downstream analysis. Prin-
cipal component analysis also showed that protein measures
were affected by the study center, and thus,we either adjusted
for the center using linear regression or added the center as a
covariate in all downstream analysis. The identified center ef-
fect is likely to be caused by differences in sample handling.

The assay measures the level of 1001 human proteins rep-
resenting different molecular pathways and gene families.
Most proteins are involved in the following processes: signal
transduction pathways, stress response, immune process,
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and phosphorylation, but in addition, proteolysis, cell adhe-
sion, cell differentiation, and intracellular transport proteins
are represented.

2.4. Structural magnetic resonance imaging

Volumes of the hippocampi and entorhinal cortices,
normalized by intracranial volume [23], were obtained
from 273 ANM subjects (93 controls, 62 MCI patients, 19
MCI patients converting to AD within a year, and 99 AD
patients) who had undergone structural magnetic resonance
imaging (sMRI). Imaging measures were not adjusted for
diagnosis, which allowed the identification of proteins asso-
ciated with brain atrophy caused by AD. The volumetric data
were not used to aid in the clinical diagnosis of AD. Detailed
information regarding data acquisition, preprocessing, and
quality control assessment has been described for this cohort
elsewhere [24,25].

2.5. Calculation of the rate of cognitive decline

The rate of cognitive decline (disease progression) in 329
AD patients (214 from ANM, 87 from ARUK, and 28 from
DCR) was calculated based on longitudinal MMSE assess-
ments [26]. For theANMcohort,MMSE scoreswere gathered
at five visits, in which visits were 3 months apart (1-year
follow-up). For the ARUK and DCR cohorts, MMSE scores
were obtained annually over a period of 2 years (three visits).
To estimate the rate of decline, only samples with at least three
MMSE measures were included. Linear mixed-effect models
with a random intercept and random slope were generated
using the package “nlme” in the open source statistical soft-
ware package R (www.r-project.org). This was done sepa-
rately for ANM, and for DCR and ARUK combined,
because of the differences in assessment windows between
the cohorts. Samples and the center were included as random
effects in themodel. Further covariates including age of onset,
disease duration at baseline, gender, apolipoprotein (APOE)
ε4 allele presence, living in a nursing home, and years of ed-
ucationwere investigated for their effect on the rate of decline.
We found that age of onset, living in a nursing home, and
education had significant effects on the rate (P value ,.05)
and thus were included as fixed effects in the final model.
The slope coefficient obtained from the final model for each
sample was then used as the rate of cognitive decline, defined
as the change in MMSE per day. The cognitive decline slopes
were first derived and then tested for associations between
protein levels because this allows us to capture a greater sub-
ject variance because we had MMSE scores for 329 AD
patients, but plasma protein measures only for 239 (173
from ANM, 44 from ARUK, and 22 from DCR).

2.6. Data analysis
2.6.1. Single-analyte analysis
All proteins were analyzed individually for their associa-

tion with the following AD outcome measures: disease
status (AD vs. CTL and MCI stable vs. MCI converter),
sMRI imaging measures (volume of left/right entorhinal cor-
tex and left/right hippocampus), and rate of cognitive
decline (MMSE change). Logistic regression in R was
used for each protein to find associations with the disease
status. The association between protein levels and sMRI im-
aging measures and the association between protein mea-
sures and the rate of cognitive decline were investigated
using linear regression in R. Subjects’ age at sampling,
gender, presence of APOE ε4 alleles, and recruitment center
were used as covariates for the imaging models. Imaging
models were built using all diagnosis groups, as well as
only using control groups. For the rate of cognitive decline
models, covariates were not included because they have
been adjusted for in the rate of decline calculation.
Throughout the single-analyte analysis, we applied false dis-
covery rate (FDR) to correct for multiple testing.

2.6.2. Multivariate analysis
A random forest approach (R package “randomForest”)

was used to develop an AD versus control classifier. Default
settings were applied (ntree5 500, mtry5 square root of the
number of variables for classification models, and
mytry5 number of variables divided by three for regression
models). After center adjustment using linear regression, the
residuals were split into a test and training set such that the
training set comprised cases and controls matched on age,
APOE ε4 presence, and gender. The training set consisted
of 99 AD samples and 99 control samples, and the indepen-
dent test set comprised 232 AD and 112 controls. It was
possible to match only 99 controls and AD samples, and
thus, our training set is smaller. The training set was used
to rank the proteins according to their predictive power.
This was done by bootstrapping the training data 100 times,
such that it was randomly split into a bootstrap training set
(75%) and a bootstrap test set (25%). The bootstrap training
set was used to build a random forest model and then tested
with the bootstrap test set. In a random forest model, each
protein typically gets assigned with an importance score,
which can be used to rank proteins. Because the bootstrap-
ping procedure was executed 100 times, each of the proteins
was assigned a total of 100 ranks. All individually obtained
ranks were summed for each protein resulting in a list of pro-
teins sorted according to predictive power. The next step was
to select the optimum number of proteins with the aim of
keeping numbers as low as possible. This involved con-
ducting a second round of bootstrapping, this time including
backward elimination. First, the top 100 proteins were
selected, based on the variable importance achieved in the
previous optimization step to build 100 bootstrap random
forest models, which were then tested with each associated
bootstrap test set. This resulted in 100 bootstrap results for
these proteins. This was then repeated with the top 90 to
50 proteins in steps of 10, then to 30 proteins in steps of 5,
and finally down to 2 proteins in steps of 1. For each set of
proteins, the mean bootstrap testing performance was

http://www.r-project.org
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calculated, and based on the best performance, the optimal
number of proteins was identified. A final model was then
built in the complete training data using the optimized num-
ber of proteins and subsequently tested with the independent
test set.

The same model development strategy was applied to
build a dichotomous model to predict which MCI patients
converted to AD within 1 year of sampling. All data were
center adjusted using linear regression. The obtained re-
siduals were then used for the model development
including age, APOE ε4 presence, and gender as covari-
ates. Because the data set was highly imbalanced (106 sta-
ble MCI patients and 43 MCI patients converting to AD),
we randomly selected 75% of the MCI converter samples
and then selected the equal number of stable MCI samples
(undersampling) to balance the training set. All remaining
samples were used in the test set. Additionally, random
forest regression models were built to predict the rate of
cognitive decline, left/right entorhinal cortex volume,
and left/right hippocampal volume. For the brain atrophy
regression models, center-adjusted data were used, and
age, gender, and APOE ε4 presence were included in
the random forest model development. These covariates
were omitted in the rate of cognitive decline model
because they were already included when calculating
the rate of decline. The data set was split randomly into
a training set (75%) and a test set (25%) for each of the
five regression models.
A
N
M
),
A
lz
h
ei
m
er
’s
R
es
ea
rc
h
U
K
(A

R

M
C
I
(6
6
)

M
C
I-
A
D

(4
3
)

A
D

7
0
.0
-7
8
.0
)

7
6
(7
1
.0
-8
0
.0
)

7
7
.5

1
8
/2
6

6
4
/1

0
0

/2
1
7
/2
3
/3

8
6
/7

0
2

2
7
.0
0
-2
9
.0
0
)

2
6
.5

(2
5
.0
0
-2
8
.0
0
)

2
1
.0

3
2
4

m
er
’s
d
is
ea
se
;
IQ

R
,
in
te
rq
u
ar
ti
le

ra
n
g
e;

at
ed

u
si
n
g
a
tw
o
-w

ay
an
al
y
si
s
o
f
va
ri
an
3. Results

Demographic characteristics stratified by cohort are pro-
vided in Table 1. Comparisons were undertaken between co-
horts with respect to clinical diagnosis using a two-way
analysis of variance. Significant distributional differences
were found for gender and MMSE score at baseline; no sig-
nificant differences in the distributions of age and number of
APOE ε4 alleles across the three cohorts were observed.
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3.1.1. AD versus healthy control subjects
The single-analyte logistic regression for AD cases

versus controls showed that 138 proteins were associated
with AD at a significance level of P value ,.05 and four
proteins at a q value ,0.05: prostate-specific antigen com-
plexed to the serine protease inhibitor a1-antichymotrypsin
(odds ratio [OR], 6.85; b 5 1.92; q value 5 0.0005),
pancreatic prohormone (OR, 2.41; b 5 0.88; q
value 5 0.0009), calcium/calmodulin-dependent protein
kinase (OR, 0.01; b 5 24.38; q value 5 0.0288), and
trypsin (OR, 2.24; b 5 0.81; q value 5 0.0475). Results
for all 1001 proteins are provided in Supplementary
Table 1.



Fig. 1. Receiver operating curve for the diagnostic model predicting AD in

which samples used for training were matched by age, gender, and APOE ε4

presence. The area under the curve is 0.70.
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In the random forest analysis, we found the highest
mean training performance was achieved by a model con-
sisting of 80 proteins. However, for a prospective clinical
application, it is desirable to keep the number of proteins
as low as possible while maintaining a high performance.
Thus, we selected a model with 13 proteins because it is
the lowest number of proteins before the training perfor-
mance (sensitivity 5 74%; specificity 5 72%) dropped
drastically (Supplementary Fig. 1). The 13 top proteins
(Table 2) and the complete training cohort were used to
build the final predictive model, which was then tested
with the independent test set. The model predicted 66%
of all test samples correctly with a sensitivity of 67%, a
specificity of 64%, a positive predictive value of 80%,
and a negative predictive value of 48%. A receiver oper-
ating curve analysis resulted in an area under the curve
(AUC) of 0.70 (Fig. 1).

3.1.2. Conversion of MCI to AD
Logistic regression comparing stable MCI subjects with

MCI converters showed that 20 proteins were significantly
associated (P value,.05) with conversion to AD. However,
none of them passed multiple testing corrections (full results
in Supplementary Table 1). We also developed a random for-
est model to predict the conversion from MCI to AD.
Although the training performance in the training set looked
promising with a specificity of 85% and a sensitivity of 86%,
the model only achieved a specificity of 61%, a sensitivity of
55%, a positive predictive value of 17%, and a negative pre-
dictive value of 90% in the independent test set (74 stable
MCI samples and 11 converters).

3.2. Brain atrophy

Linear regression was used to compare plasma proteins
levels with hippocampi and entorhinal cortices, that is, brain
regions known to relate to early AD pathology. Results for
all proteins are summarized in Supplementary Table 1.
Table 2

Proteins used in the diagnostic classification model ranked by variable importanc

Importance rank Protein

1 Placenta growth factor

2 Interleukin-17F

3 Fibronectin FN1.4

4 Fibronectin

5 Secretory leukocyte protease inhibitor

6 Fibronectin FN1.3

7 Epithelial cell kinase

8 Prolactin

9 C-C motif chemokine 14

10 Calcium/calmodulin-dependent protein

kinase type II subunit a

11 Seprase

12 Pancreatic prohormone

13 Coagulation factor XI

NOTE. This table also shows the odds ratio, b coefficient, P value, and q value
3.2.1. Entorhinal cortex
Sixty-eight proteins correlated with left entorhinal vol-

ume (P value ,.05), four of which passed multiple testing
corrections at a q value threshold of 0.05 (Table 3). The anal-
ysis of brain atrophy in control samples only showed that
pancreatic prohormone and serine/threonine-protein kinase
Chk2 were associated with atrophy in the left entorhinal cor-
tex in controls only at P value ,.05. However, they did not
pass multiple testing corrections (q value ,0.05). Thirty-
two proteins correlated with both the left and right entorhinal
volumes. Most of these proteins showed a stronger correla-
tion with the left side. Sixty-seven proteins correlated with
right entorhinal volume at the uncorrected P value threshold,
one of which passed multiple testing corrections at a q value
threshold of 0.05 (Table 3). The random forest regression
e

Odds ratio b P value q value

1.86 0.62 .2439 0.6285

1.81 0.59 .1925 0.5802

0.75 20.29 .0363 0.3519

0.75 20.29 .0244 0.3484

2.33 0.84 .0450 0.3544

0.74 20.30 .0353 0.3519

1.59 0.46 .1252 0.5001

1.59 0.46 .0799 0.4057

2.58 0.95 .0020 0.1473

0.01 24.38 8.49 ! 1025 0.0288

0.27 21.31 .0008 0.1080

2.41 0.88 1.68 ! 1026 0.0009

2.40 0.87 .08540 0.4109

achieved in the logistic regression AD versus controls.



Table 3

Proteins significantly correlated with the left entorhinal cortex passing FDR correction q value ,0.05 (**) are also significantly correlated with the right

entorhinal cortex and left/right hippocampal volume at P value ,.05 (*)

Protein

Entorhinal cortex Hippocampus

Left Right Left Right

R2 b R2 b R2 b R2 b

Fetuin B 0.20 0.0002** 0.14 0.0002* 0.31 0.0002** 0.30 0.0003*

Pancreatic prohormone 0.19 21.0 ! 1026** 0.14 27.5 ! 1025* 0.32 20.0001* 0.30 20.0001*

PSA-ACT 0.19 20.0002** 0.13 20.0001* 0.31 20.0002* 0.30 20.0002*

Chk2 0.18 0.0002** 0.12 9.6 ! 1025* 0.29 0.0001* 0.28 0.0001

Abbreviations: FDR, false discovery rate; PSA-ACT, prostate-specific antigen complexed to the serine protease inhibitor a1-antichymotrypsin; Chk2, serine/

threonine-protein kinase Chk2.
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model developed for predicting the right and left entorhinal
cortex volumes achieved R2 5 20.04 and R2 5 0.11 in the
independent test sets (68 samples), respectively (training
R2 5 0.26, R2 5 0.20; 212 samples).

3.2.2. Hippocampal volume
All results for the hippocampal volume comparisons are

summarized in Supplementary Table 1. Sixty-two proteins
were associated with the left hippocampal volume, and one
of them, pancreatic prohormone, passed multiple testing cor-
rections (Table 3). Sixty-six proteins were associated with the
right hippocampal volume (P value ,.05), but none of them
passedmultiple testing corrections (q value,0.05). The anal-
ysis of brain atrophy in control samples only showed that
pancreatic prohormone was associated with atrophy in the
left and right hippocampi in controls only at P value ,.05.
However, it did not pass multiple testing corrections (q value
,0.05). Among the identified proteins, 37 were correlated
with both the left and right hippocampal volumes. Most of
these proteins showed a stronger correlation with the left
side. The random forest regression model developed for the
right and left hippocampal volumes predicted the independent
test sets (68 samples) with an R2 5 0.06 and R2 5 0.14,
respectively (training R2 5 0.30, R2 5 0.31; 212 samples).
3.3. Rate of cognitive decline

The estimated mean loss inMMSE points per year for AD
samples used in the protein analysis was ANM 1.5 (standard
deviation [STD] 5 1.5), ARUK 2.9 (STD 5 1.4), and DCR
2.2 (STD 5 1.4). One hundred thirty-nine proteins were
found to correlate with the rate of cognitive decline (P value
,.05), two of which passed multiple corrections (q value
,0.05), namely clusterin (R2 5 0.08; b 5 2.50; q
value 5 0.012) and nucleosome assembly protein 2
(R2 5 0.06; b 5 0.74; q value 5 0.044). Both proteins
were positively associated with the rate of decline, and there-
fore, the quantity of these proteins is higher in the plasma of
patients with fast cognitive decline. Results for all proteins
are summarized in Supplementary Table 1. A random forest
regression model optimized for predicting the rate of cogni-
tive decline achieved a training performance of R2 5 0.20
(180 samples) and test performance of R2 5 0.10 in the in-
dependent test set (59 samples).
3.4. Summary single-analyte analysis results

A total of 355 proteins were found to be associated with at
least one of the outcome measures at an uncorrected
threshold of P value ,.05 (eight passing an FDR q value
threshold of ,0.05). Scatter plots and box plots for the pro-
teins showing the strongest association with one of the inves-
tigated outcome measures are shown in Fig. 2.

We found a high correlation between the four magnetic
resonance imaging (MRI) measures, especially between
the left and right hippocampal volumes and the left and right
entorhinal cortices. In contrast, the rate of cognitive decline
in AD subjects is not significantly associated with hippo-
campal (HC) or entorhinal cortex (EC) atrophy
(Supplementary Table 2). Thus, the rate of cognitive decline
is the only independent outcome measure. Twenty-four pro-
teins were significantly associated (P value ,.05) with at
least three of the following five outcome groups: AD and
control, stable MCI and MCI converting to AD, entorhinal
cortex (left and/or right), hippocampus (left and/or right),
and the rate of cognitive decline (Fig. 3.)
4. Discussion

We analyzed 1001 proteins in 691 human plasma samples
to identify proteins associated with AD clinical diagnosis,
conversion from MCI to AD, rate of cognitive decline, and
brain atrophy. The single-analyte analysis showed that sets
of significant variables differed for the different outcome
measures. Although all these outcome measures are linked
to AD, they capture different aspects of the pathology. Clin-
ical diagnosis may be noisy and imaging atrophy is contin-
uous and may capture earlier changes. The rate of
cognitive decline may be the most independent of the
outcome measures. Additionally, although separate proteins
are reported for each outcome measure, they may correlate
or be part of the same pathways or processes—they may
be surrogates for each other. Prostate-specific antigen com-
plexed to a1-antichymotrypsin (PSA-ACT), pancreatic



Fig. 2. Scatter plots and box plots for proteins, which showed strongest association to outcomemeasures. All imagingmeasures were normalized by intercranial

volume. Proteins were measured in relative fluorescence units (RFUs). PSA-ACT, prostate-specific antigen complexed to the serine protease inhibitor a1-

antichymotrypsin; CTL, control; AD, Alzheimer’s disease; MCI, mild cognitive impairment; MMSE, Mini-Mental State Examination.
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prohormone, clusterin, and fetuin B showed the strongest as-
sociations and thus will be discussed in greater detail.

Prostate-specific antigen complexed to the serine prote-
ase inhibitor a1-antichymotrypsin (PSA-ACT complex)
showed the strongest association with AD diagnosis and
was also associated with hippocampal and entorhinal cortex
volume atrophy. To our knowledge, this is the first study of
plasma PSA-ACT complex in AD. Prostate-specific antigen
is a serine protease that in serum is predominantly found
complexed to the serine protease inhibitor a1-
antichymotrypsin. a1-Antichymotrypsin colocalizes with
amyloid plaques in AD brain [27] and both prostate-
specific antigen [28,29] and a1-antichymotrypsin [30,31]
are detectable in CSF. As such, Mulder et al. [32] found
that prostate-specific antigen was present in the brain, but
levels of prostate-specific antigen and PSA-ACT complex
did not differ across in CSF samples from controls, fronto-
temporal lobe dementia, and AD and MCI patients.

Of the 1001 proteins measured, fetuin B showed the
strongest correlation with left and right entorhinal cortex
volumes. It was also significantly correlated with the left
and right hippocampus atrophy. All brain atrophy correla-
tions were positive, and thus, patients with progressing brain
atrophy had a reduced level of fetuin B. In a previous study,
plasma fetuin Awas found to be lower in AD patients than in
controls [33], and Denecke et al. [34] have suggested that fe-
tuin B has similar but not identical function to fetuin A. Fe-
tuin A was not present on the SomaLogic panel and so was
not measured directly.

Clusterin was the strongest associated protein with the
rate of cognitive decline, and thus, we found fast declining
AD patients have higher clusterin levels in plasma than
slow declining AD patients. This finding replicates pervious
findings, which showed the association of clusterin with
more severe disease and rapid clinical progression [20,35].
However, 66 of our AD samples (63 ANM and 3 ART;
28% of samples) were previously used by Thambisetty
et al. [20]. When removing these 66 samples from the data
set and using the remaining 173 samples (72%), clusterin re-
mained significantly associated with the rate of cognitive
decline (q value 5 0.007), showing independent validation
of the association of clusterin with the rate of progression.

Pancreatic prohormone is a promising candidate, which
we found to be significantly associated with three outcome
measures, namely AD clinical diagnosis, left hippocampal
atrophy, and left entorhinal cortex volume. It was also found
to be associated with changes in brain volume in the left/
right hippocampus and the left entorhinal cortex in controls



Fig. 3. Univariate heatmap showing proteins, which were significantly associated with at least three of the seven studied Alzheimer’s disease (AD) outcome

measures: case versus control (AD), mild cognitive impairment (MCI) to AD conversion (MCIc), rate of cognitive decline (ROD), left/right entorhinal cortex

atrophy (EC.left/EC.right), and left/right hippocampal atrophy (HC.left/HC.right). Proteins signed with * were found to be significant at a P value,.05 and pro-

teins signedwith a **were found to be significant at aP value,.01. Scaledb valueswere used to generate the heatmap and thus red indicated positive association

and blue negative association. LRIG3, leucine-rich repeats and immunoglobulin-like domains protein 3; PSA-ACT, prostate-specific antigen complexed to the

serine protease inhibitora1-antichymotrypsin; IGFBP-2, insulin-like growth factor–binding protein 2; BPI, bactericidal permeability-increasing protein; PGRP-

S, peptidoglycan recognition protein 1; NKG2D, NKG2-D type II integral membrane protein; HIBADH, 3-hydroxyisobutyrate dehydrogenase, mitochondrial.
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only. This finding might indicate that pancreatic prohormone
is associated with preclinical changes. However, this would
require follow-up of the control samples in order to be veri-
fied. Furthermore, it was among the 13 proteins, which were
present in the final AD diagnostic model. Previous studies
have shown that pancreatic prohormone levels are associated
with AD diagnosis [15,36–38] and amyloid burden [39].
Also, the use of pancreatic prohormone in a protein signature
for AD prediction was reported [36]. Our study is the first
non-Luminex xMAP (Luminex Corporation, Austin, TX,
USA) study to identify pancreatic prohormone as a potential
marker for AD, and we also show that it associates with other
outcome measures such as brain atrophy.

Other proteins generally linked to AD pathology in the
literature that we also found to be altered in the periphery
include glypican 3, higher levels of which were found in
AD patients, individuals with high left and right hippocam-
pal atrophy, and MCI patients converting to AD within 1
year; glypican 1 was previously found to be present in
both diffuse and classic cerebral senile plaques and tangles
[40]; neurexophilin-1, a flanking single-nucleotide polymor-
phism (rs6463843) of which was reported as a top hit in an
Alzheimer’s Disease Neuroimaging Initiative (ADNI)
genome-wide association study of brain-wide MRI pheno-
typic measures of gray matter density, volume, and cortical
thickness [41], had increased levels in AD patients whose
cognitive decline was rapid; visfatin, which in accumula-
tions may lead to damage of the blood-brain barrier, amyloid
formation, and brain damage [42], was found to be signifi-
cantly increased in patients with fast cognitive decline. We
found that levels of metalloproteinase inhibitor 3, which
has previously been shown to be increased in AD brains
[43], was significantly increased in the plasma of AD pa-
tients with a fast rate of cognitive decline.

We were able to replicate a number of specific findings
from previous AD biomarker studies of the periphery. a1-
Antitrypsin has been found to be associated with AD
[36,44–46] and brain amyloid burden [39]. Other proteins
that we were able to replicate include apolipoprotein E
[19,37–39,47], granulocyte colony–stimulating factor
[15,18], matrix metallopeptidase 9 [36,39], fibronectin
[48], complement component C6 [49], and immunoglobulin
E [39].

Additionally, we developed and optimized multivariate
classifiers for predicting clinical diagnosis, conversion
from MCI to AD, right/left hippocampal/entorhinal volume,
and rate of cognitive decline. The only model that performed
well was the AD diagnostic model, which consisted of 13
proteins using samples matched by age, gender, and APOE
ε4 presence in the training set. The other models, although
performing well in training did not perform well in the inde-
pendent test suggesting the training models were overfitted,
as a possible side effect of the small sample size.

Ray et al. [18] reported a model comprising 18 plasma
proteins that achieved an overall accuracy of 89% for AD
diagnosis in a data set consisting of 85 AD patients and 79
controls. They did not report adjustment for covariates,
such as age, gender, and APOE ε4 genotype. Bj€orkqvist
et al. [50] quantified the same 18 proteins in plasma from
174 controls, 142 patients with AD, and 88 patients with
other dementias and found that these 18 proteins could clas-
sify patients with AD from controls only with low diagnostic
precision (AUC 5 0.63). Recently, Doecke et al. [36] also
identified a separate 18–protein biomarker signature in
blood plasma using samples from 207 AD patients and
754 healthy controls recruited for the Australian Imaging
Biomarker and Lifestyle study. They validated the signature
in the ADNI cohort (80% accuracy; 108 AD patients and 57
healthy controls) but included age, gender, and APOE ε4 ge-
notype as predictors in the model. Interestingly, age, gender,
and APOE ε4 alone could predict AD with an accuracy of
77% [36]. We chose to develop our diagnostic classifier by
matching cases and controls in the training set. The resulting
model achieved a sensitivity of 67%, a specificity of 64%,
and an AUC of 0.70 when tested in an independent test
set. The performance is less than that reported in some pre-
vious studies, but it is also less likely to be confounded by
age, gender, and APOE ε4 presence. The performance of
this classifier is possibly too low for screening of a wider
population; however, it might contribute to gain greater un-
derstanding of AD pathophysiology, and it is worth noting
that two proteins in our diagnostic classifier have been re-
ported in previous classification studies, namely pancreatic
prohormone [36] and prolactin [15]. The remaining 11 pro-
teins were unique to our classifier; however, we do not know
if this is because they have not been studied before or they
were not found to be discriminatory in other studies. None-
theless, 8 of the 13 proteins used in the classifier were also
found to be significantly correlated with AD status in our
univariate analysis: fibronectin, fibronectin FN1.3, fibro-
nectin FN1.4, secretory leukocyte protease inhibitor, C-C
motif chemokine 14, calcium/calmodulin-dependent protein
kinase type II subunit a, pancreatic prohormone, and se-
prase. The remaining five proteins may have been selected
during the multivariate optimization procedure because of
interaction effects between the proteins, which were not
tested for in the univariate analysis. An alternative approach
to the used one would be to select proteins with previously
reported AD association, which might lead to improved per-
formance.

The generally lower test performance in comparison with
the training performance might be due to slight overfitting to
the training set. Sample size could also be affecting perfor-
mance; for the MCI conversion classifier, we had only 43
MCI samples converting to AD. Other possibilities that
could have negatively influenced the classifier performance
are sample heterogeneity and short follow-up for MCI sam-
ples. Cohort differences might have also played a role,
although we adjusted the data for center effects. The perfor-
mance model predicting cognitive decline might be
improved by dichotomizing the individuals, into fast and
slow decliners.
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In our study, a larger number of proteins were found to be
associated with the left hippocampus/entorhinal cortex than
their right equivalent, which may relate to changes in the nat-
ural right-to-left asymmetry during the progression of AD.
Changes to the hippocampal right-to-left asymmetry were
alluded by previous studies [51–53].

To the best of our knowledge, this study reports the
largest number of tested proteins in plasma for their suit-
ability as AD biomarkers using array technology. Rather
than only comparing protein quantities with the clinical dis-
ease status, we further compared protein levels with AD en-
dophenotypes of brain atrophy (left/right entorhinal and
hippocampal volumes) and also the rate of cognitive decline
(rate of MMSE change). We found 53 proteins to be associ-
ated with three or more AD outcome measures, some novel
and some previously identified. Some of the novel proteins
may not have been studied before in the context of AD
and could be good candidates for further validation.
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