73 research outputs found

    A conditional marker gene allowing both positive and negative selection in plants

    Get PDF
    Selectable markers enable transgenic plants or cells to be identified after transformation. They can be divided into positive and negative markers conferring a selective advantage or disadvantage, respectively. We present a marker gene, dao1, encoding D-amino acid oxidase (DAAO, EC 1.4.3.3) that can be used for either positive or negative selection, depending on the substrate. DAAO catalyzes the oxidative deamination of a range of D-amino acids. Selection is based on differences in the toxicity of different D-amino acids and their metabolites to plants. Thus, D-alanine and D-serine are toxic to plants, but are metabolized by DAAO into nontoxic products, whereas D-isoleucine and D-valine have low toxicity, but are metabolized by DAAO into the toxic keto acids 3-methyl-2-oxopentanoate and 3-methyl-2-oxobutanoate, respectively. Hence, both positive and negative selection is possible with the same marker gene. The marker has been successfully established in Arabidopsis thaliana, and proven to be versatile, rapidly yielding unambiguous results, and allowing selection immediately after germination

    Overexpression of vesicle-associated membrane protein PttVAP27-17 as a tool to improve biomass production and the overall saccharification yields in Populus trees

    Get PDF
    Background Bioconversion of wood into bioproducts and biofuels is hindered by the recalcitrance of woody raw material to bioprocesses such as enzymatic saccharification. Targeted modification of the chemical composition of the feedstock can improve saccharification but this gain is often abrogated by concomitant reduction in tree growth. Results In this study, we report on transgenic hybrid aspen (Populus tremula x tremuloides) lines that showed potential to increase biomass production both in the greenhouse and after 5 years of growth in the field. The transgenic lines carried an overexpression construct for Populus tremula x tremuloides vesicle-associated membrane protein (VAMP)-associated protein PttVAP27-17 that was selected from a gene-mining program for novel regulators of wood formation. Analytical-scale enzymatic saccharification without any pretreatment revealed for all greenhouse-grown transgenic lines, compared to the wild type, a 20-44% increase in the glucose yield per dry weight after enzymatic saccharification, even though it was statistically significant only for one line. The glucose yield after enzymatic saccharification with a prior hydrothermal pretreatment step with sulfuric acid was not increased in the greenhouse-grown transgenic trees on a dry-weight basis, but increased by 26-50% when calculated on a whole biomass basis in comparison to the wild-type control. Tendencies to increased glucose yields by up to 24% were present on a whole tree biomass basis after acidic pretreatment and enzymatic saccharification also in the transgenic trees grown for 5 years on the field when compared to the wild-type control. Conclusions The results demonstrate the usefulness of gene-mining programs to identify novel genes with the potential to improve biofuel production in tree biotechnology programs. Furthermore, multi-omic analyses, including transcriptomic, proteomic and metabolomic analyses, performed here provide a toolbox for future studies on the function of VAP27 proteins in plants

    Impact of xylan on field productivity and wood saccharification properties in aspen

    Get PDF
    Xylan that comprises roughly 25% of hardwood biomass is undesirable in biorefinery applications involving saccharification and fermentation. Efforts to reduce xylan levels have therefore been made in many species, usually resulting in improved saccharification. However, such modified plants have not yet been tested under field conditions. Here we evaluate the field performance of transgenic hybrid aspen lines with reduced xylan levels and assess their usefulness as short-rotation feedstocks for biorefineries. Three types of transgenic lines were tested in four-year field tests with RNAi constructs targeting either Populus GT43 clades B and C (GT43BC) corresponding to Arabidopsis clades IRX9 and IRX14, respectively, involved in xylan backbone biosynthesis, GATL1.1 corresponding to AtGALT1 involved in xylan reducing end sequence biosynthesis, or ASPR1 encoding an atypical aspartate protease. Their productivity, wood quality traits, and saccharification efficiency were analyzed. The only lines differing significantly from the wild type with respect to growth and biotic stress resistance were the ASPR1 lines, whose stems were roughly 10% shorter and narrower and leaves showed increased arthropod damage. GT43BC lines exhibited no growth advantage in the field despite their superior growth in greenhouse experiments. Wood from the ASPR1 and GT43BC lines had slightly reduced density due to thinner cell walls and, in the case of ASPR1, larger cell diameters. The xylan was less extractable by alkali but more hydrolysable by acid, had increased glucuronosylation, and its content was reduced in all three types of transgenic lines. The hemicellulose size distribution in the GALT1.1 and ASPR1 lines was skewed towards higher molecular mass compared to the wild type. These results provide experimental evidence that GATL1.1 functions in xylan biosynthesis and suggest that ASPR1 may regulate this process. In saccharification without pretreatment, lines of all three constructs provided 8-11% higher average glucose yields than wild-type plants. In saccharification with acid pretreatment, the GT43BC construct provided a 10% yield increase on average. The best transgenic lines of each construct are thus predicted to modestly outperform the wild type in terms of glucose yields per hectare. The field evaluation of transgenic xylan-reduced aspen represents an important step towards more productive feedstocks for biorefineries

    Breeding progress and preparedness for mass‐scale deployment of perennial lignocellulosic biomass crops switchgrass, miscanthus, willow and poplar

    Get PDF
    UK: The UK‐led miscanthus research and breeding was mainly supported by the Biotechnology and Biological Sciences Research Council (BBSRC), Department for Environment, Food and Rural Affairs (Defra), the BBSRC CSP strategic funding grant BB/CSP1730/1, Innovate UK/BBSRC “MUST” BB/N016149/1, CERES Inc. and Terravesta Ltd. through the GIANT‐LINK project (LK0863). Genomic selection and genomewide association study activities were supported by BBSRC grant BB/K01711X/1, the BBSRC strategic programme grant on Energy Grasses & Bio‐refining BBS/E/W/10963A01. The UK‐led willow R&D work reported here was supported by BBSRC (BBS/E/C/00005199, BBS/E/C/00005201, BB/G016216/1, BB/E006833/1, BB/G00580X/1 and BBS/E/C/000I0410), Defra (NF0424) and the Department of Trade and Industry (DTI) (B/W6/00599/00/00). IT: The Brain Gain Program (Rientro dei cervelli) of the Italian Ministry of Education, University, and Research supports Antoine Harfouche. US: Contributions by Gerald Tuskan to this manuscript were supported by the Center for Bioenergy Innovation, a US Department of Energy Bioenergy Research Center supported by the Office of Biological and Environmental Research in the DOE Office of Science, under contract number DE‐AC05‐00OR22725. Willow breeding efforts at Cornell University have been supported by grants from the US Department of Agriculture National Institute of Food and Agriculture. Contributions by the University of Illinois were supported primarily by the DOE Office of Science; Office of Biological and Environmental Research (BER); grant nos. DE‐SC0006634, DE‐SC0012379 and DE‐SC0018420 (Center for Advanced Bioenergy and Bioproducts Innovation); and the Energy Biosciences Institute. EU: We would like to further acknowledge contributions from the EU projects “OPTIMISC” FP7‐289159 on miscanthus and “WATBIO” FP7‐311929 on poplar and miscanthus as well as “GRACE” H2020‐EU.3.2.6. Bio‐based Industries Joint Technology Initiative (BBI‐JTI) Project ID 745012 on miscanthus.Peer reviewedPostprintPublisher PD

    A functional genomics approach to wood development

    Get PDF
    Wood is widely used for various purposes, e.g. for pulp and paper, construction material and heating. Thus it is surprising that the cellular and molecular regulation of wood formation remains poorly characterised. This study therefore addresses the process of wood formation in order to elucidate factors controlling this process at the molecular level. Two different approaches were taken, using novel technologies that have become available in recent years. First, a new group of homeobox transcription factors were identified, denoted the PALE class due to a five amino acid insertion between helix 1 and helix 2 in the homeodomain. All identified members of this class in hybrid aspen have an expression pattern suggesting a role in wood formation. This group of transcription factors were also identified in Arabidopsis thaliana, the model plant for plant molecular biology. Function of the PALE-class of homeobox genes was investigated using, transgenic hybrid aspen and transgenic Arabidopsis plants, expressing different PALE class members in sense and anti-sense direction under the control of the CaMV 35S promotor. Transactivation properties of the PttHB 1 protein was analysed in yeast, and it was demonstrated that a region in PttHB 1, which show homology to the strong transactivation domain of VP 16, can function as an activator of transcription in yeast. In the second approach, anEST sequencing project was initiated where 4809 EST’s, originating from the cambial region of hybrid aspen, were sequenced. These EST’s corresponded to 2988 genes, based on cluster analysis. 745 different proteins were identified and annotated (not counting iso-enzymes). Using these EST’s as a base, a cDNA microarray was constructed representing the 2988 genes. The microarray was used for detailed transcriptprofiling of the wood-differentiation process, initiating in the meristematic cambium cells and terminating in mature xylem cells. In order to enable this experiment, a high fidelity target amplification method was developed, which is based on a 3’-prime tagged, PCR amplification protocol. This method allows transcript profiling with cDNA microarrays using minute amounts of starting material (-O.lrng of plant tissue). In practical use, two-fold expression changes observed with this technology is significant with 99% confidence. Using this technology, a transcriptional roadmap to xylem formation was produced. This data set describes unique, hitherto, unknown expression patterns for thousands of genes during xylem formation. We also demonstrate the utility of this expression data as a platform to rapidly perform functional analysis of genes involved in xylem formation, using Arabidopsis thaliana mutant collections

    From genes towards products and the significance of gene delivery

    Get PDF
    • 

    corecore