11 research outputs found
ИСЛАНД УЛСЫН БАГА ТЕМПЕРАТУРТАЙ, ГАЗРЫН ГҮНИЙ ДУЛААНЫ ИЛЭРЦТЭЙ ТАЛБАЙ ДЭЭРХ ТЕМ БА МТ АРГУУДЫН ХЭРЭГЛЭЭ
Geothermal exploration involves geology, geochemistry and geophysics. In geophysical exploration, resistivity surveying plays a most important role in delineating the reservoir. The parameters that control the geothermal system show a strong response to electrical resistivity. The resistivity methods that are mostly used in geothermal exploration in Iceland are TEM (Transient electromagnetics) and MT (Magnetotellurics). The resulting resistivity cross sections and resistivity depth slices, show a shallow lying low resistivity layer and deep lying low resistivity towards the end of the cross section
Sub-surface geology and velocity structure of the Krafla high temperature geothermal field, Iceland : Integrated ditch cuttings, wireline and zero offset vertical seismic profile analysis
The research leading to these results has received funding from the European Community's Seventh Framework Programme under grant agreement No. 608553 (Project IMAGE). The VMAPP project run by VBPR, DougalEARTH Ltd. and TGS also contributed funding to the borehole characterization of the K-18 borehole. Landsvirkun is acknowledged for their effort and assistance in this work and in particular for allowing the use of the data from well K-18. We further acknowledge the support from the Research Council of Norway through its Centres of Excellence funding scheme, project 22372 (SP and DAJ).Peer reviewedPostprin
3D S-wave velocity imaging of Reykjanes Peninsula high-enthalpy geothermal fields with ambient-noise tomography
Tomographic imaging based on ambient seismic noise measurements has shown to be a powerful tool, especially in areas like Iceland, where the microseism illumination is excellent. In this paper, we produce a 3D S-wave tomographic image over the western Reykjanes Peninsula high-enthalpy geothermal fields and evaluate the reliability of the tomographic results for different resolutions through simulated and real data. We use 30 broadband stations operating for approximately one-and-a-half year and apply ambient noise seismic interferometry for each station-pair. This results in empirical Green's functions in which especially the ballistic surface waves (BSW) are well resolved. The retrieved BSW exhibit a high signal-to-noise ratio between 0.1 and 0.5 Hz, and the beamforming analysis indicates an apparent surface-wave velocity of 3 km/s over a broad azimuthal range. For the tomographic inversion, we invert the estimated phase velocities between all station pairs to frequency-dependent phase velocity maps in four different resolutions (1, 2, 3, and 4 km) using a Tikhonov regularisation. With the estimated regularisation parameter per frequency per resolution, we invert simulated data for checkerboard sensitivity tests per frequency for different combinations of velocity anomaly sizes and resolutions. Finally, after the inversion to depth, we detect S-wave velocity anomalies with variations between −15% and 15% with reference to an estimated average velocity using 1 km and 3 km of lateral resolutions and 1 km of vertical resolution. This study shows the potential of ambient noise tomography as complementary seismological tool for reservoir characterization
3D S-wave velocity imaging of Reykjanes Peninsula high-enthalpy geothermal fields with ambient-noise tomography
Tomographic imaging based on ambient seismic noise measurements has shown to be a powerful tool, especially in areas like Iceland, where the microseism illumination is excellent. In this paper, we produce a 3D S-wave tomographic image over the western Reykjanes Peninsula high-enthalpy geothermal fields and evaluate the reliability of the tomographic results for different resolutions through simulated and real data. We use 30 broadband stations operating for approximately one-and-a-half year and apply ambient noise seismic interferometry for each station-pair. This results in empirical Green's functions in which especially the ballistic surface waves (BSW) are well resolved. The retrieved BSW exhibit a high signal-to-noise ratio between 0.1 and 0.5 Hz, and the beamforming analysis indicates an apparent surface-wave velocity of 3 km/s over a broad azimuthal range. For the tomographic inversion, we invert the estimated phase velocities between all station pairs to frequency-dependent phase velocity maps in four different resolutions (1, 2, 3, and 4 km) using a Tikhonov regularisation. With the estimated regularisation parameter per frequency per resolution, we invert simulated data for checkerboard sensitivity tests per frequency for different combinations of velocity anomaly sizes and resolutions. Finally, after the inversion to depth, we detect S-wave velocity anomalies with variations between −15% and 15% with reference to an estimated average velocity using 1 km and 3 km of lateral resolutions and 1 km of vertical resolution. This study shows the potential of ambient noise tomography as complementary seismological tool for reservoir characterization
The role of smectites in the electrical conductivity of active hydrothermal systems: electrical properties of core samples from Krafla volcano, Iceland
International audienceThe underground circulation of hot water, of interest for geothermal energy production, is often indirectly inferred from the presence of minerals formed by hydrothermal alteration at different temperatures. Clay minerals, such as smectite and chlorite, can be mapped from the surface using electrical soundings and give information about the structure of the geothermal system. Here, we investigate the specific role of smectite in the electrical response of igneous basaltic rocks and evaluate what physical processes make smectite a better electrical conductor than surrounding minerals. Laboratory measurements of cation exchange capacity (CEC), mineralogy, porosity and electrical conductivity are presented for 88 core samples from four boreholes at the Krafla volcano, Northeast Iceland. CEC is found to be a reliable measure of the smectite weight fraction in these volcanic samples, through a comparison with an independent quantification of the smectite content using Rietveld refinements of X-ray diffraction patterns. The bulk electrical conductivity, measured at fluid conductivities in the range 0.02-11.7 S m −1 , increases non-linearly with the fluid conductivity for samples with high smectite content. This non-linear variation is fitted with a function and a model for a conduction process through connected interlayer spaces within smectite. The process differs from electrical double layer conduction, which involves only cations on the crystal edges of smectite, not in the interlayer spaces. The laboratory results can help refine interpretations of electrical soundings in the context of geothermal exploration
Soft stimulation treatment of geothermal well RV-43 to meet the growing heat demand of Reykjavik
Reykjavik is almost entirely heated by geothermal energy. Yet, recent growth of the city significantly increased the heat demand. Past experiences in Iceland's capital region showed that hydraulic stimulation of existing geothermal wells is suited to improve hydraulic performance and energy supply. However, fluid injection may also trigger felt or even damaging earthquakes, which are of concern in populated areas and pose a significant risk to stimulation operations. Consequently, soft stimulation concepts have been developed to increase geothermal well performance while minimizing environmental effects such as induced seismicity. In a demonstration project of hydraulic soft stimulation in October 2019, more than 20.000 m³ of water were injected into well RV-43 in Reykjavik in multiple stages and with different injection schemes. The hydraulic performance of the well was improved without inducing felt seismicity. An a priori seismic risk assessment was conducted and for the first time the risk was continuously updated by an adaptive traffic light system supported by a sophisticated realtime microseismic monitoring. Our results confirm that it is possible to improve the performance of geothermal wells in Reykjavik and worldwide with acceptable technical, economic, and environmental risks. Here we provide an overview of the entire stimulation project including site description, stimulation design, zonal isolation, logging, seismic risk assessment and mitigation measures, realtime seismic, hydraulic and chemical monitoring, and stimulation results and challenges
Hydrothermal and Magmatic System of a Volcanic Island Inferred From Magnetotellurics, Seismicity, Self‐potential, and Thermal Image: An Example of Miyakejima (Japan)
International audiencePhreatic and phreatomagmatic eruptions represent some of the greatest hazards occurring on volcanoes. They result from complex interactions at a depth between rock, water, and magmatic fluids. Understanding and assessing such processes remain a challenging task, notably because a large-scale characterization of volcanic edifices is often lacking. Here we focused on Miyakejima Island, an inhabited 8-km-wide stratovolcano with regular phreatomagmatic activity. We imaged its plumbing system through a combination of four geophysical techniques: magnetotellurics, seismicity, self-potential, and thermal image. We thus propose the first comprehensive interpretation of the volcanic island in terms of rock properties, temperature, fluid content, and fluid flow. We identify a shallow aquifer lying above a clay cap (<1 km depth) and reveal its relation with magmatic-tectonic features and past eruptive activity. At greater depths (2-4.5 km), we infer a seismogenic resistive region interpreted as a magmatic gas-rich reservoir (≥370°C). From this reservoir, gases rise through a fractured conduit before being released in the fumarolic area at ∼180°C. During their ascent, these hot fluids cross a ∼1.2-km-long liquid-dominated zone causing local steam explosions. Such magmatic-hydrothermal interaction elucidates (i) the origin of the long-period seismic events and (ii) the mixing mechanism between magmatic and hydrothermal fluids, which was previously observed in the geochemical signature of fumaroles. Our results demonstrate that combining multidisciplinary large-scale methods is a relevant approach to better understand volcanic systems, with implications for monitoring strategies