143 research outputs found

    Observed transport variability of the Atlantic Subtropical Cells and their impact on tropical sea-surface temperature variability

    Get PDF
    The Atlantic Subtropical Cells (STCs) are shallow wind-driven overturning circulations connecting the tropical upwelling areas with the subtropical subduction regions. In both hemispheres they are characterized by equatorward transport at thermocline level, upwelling at the equator and poleward Ekman transport in the surface layer. STCs are suggested to impact sea surface temperature variability in tropical upwelling regions on interannual to decadal time scales through the variability either in STC transport and/or hydrographic properties. Here we present a 21st century mean state of the horizontal branches of the Atlantic STCs. Argo float data and repeated ship sections show that the equatorward part of the STCs can be observed between the 26.0 kg m-3 isopycnal and a seasonally varying upper boundary (30-70 m). Transport estimates within this layer reveal that the southern hemisphere contributes about 3 times more to the transport convergence between 10°N and 10°S than the northern hemisphere. In contrast, poleward transports in the surface layer driven by the Ekman divergence are rather symmetric. Overall, a residual transport of about 3 Sv remains. This missing transport could either be linked to diapycnal transport across the 26.0 kg m-3 isopycnal, as part of the Atlantic Meridional Overturning Circulation which partly upwells in the tropics, or to uncertainties of the transport estimates, particularly at the western boundary at 10°N. From 2010 to 2017, both Ekman divergence and thermocline layer convergence between 10°N and 10°S suggest an increase in STC transport with a dominating contribution from the northern hemisphere. The observations further show opposing thermocline layer transports at the western boundary and in the interior basin that are partly compensating each other. Implications of the increase in STC transport and variability of the STC hydrographic variability in the tropical Atlantic will be discussed

    Charmed quark component of the photon wave function

    Full text link
    We determine the c-anti-c component of the photon wave function on the basis of (i) the data on the transitions e+ e- -> J/psi(3096), psi(3686), psi(4040), psi(4415), (ii) partial widths of the two-photon decays eta_{c0}(2979), chi_{c0}(3415), chi_{c2}(3556) -> gamma-gamma, and (iii) wave functions of the charmonium states obtained by solving the Bethe-Salpeter equation for the c-anti-c system. Using the obtained c-anti-c component of the photon wave function we calculate the gamma-gamma decay partial widths for radial excitation 2S state, eta_{c0}(3594) -> gamma-gamma, and 2P states chi_{c0}(3849), chi_{c2}(3950) -> gamma-gamma.Comment: 20 pages, 8 figure

    Vector mesons in a relativistic point-form approach

    Full text link
    We apply the point form of relativistic quantum mechanics to develop a Poincare invariant coupled-channel formalism for two-particle systems interacting via one-particle exchange. This approach takes the exchange particle explicitly into account and leads to a generalized eigenvalue equation for the Bakamjian-Thomas type mass operator of the system. The coupling of the exchange particle is derived from quantum field theory. As an illustrative example we consider vector mesons within the chiral constituent quark model in which the hyperfine interaction between the confined quark-antiquark pair is generated by Goldstone-boson exchange. We study the effect of retardation in the Goldstone-boson exchange by comparing with the commonly used instantaneous approximation. As a nice physical feature we find that the problem of a too large ρ\rho-ω\omega splitting can nearly be avoided by taking the dynamics of the exchange meson explicitly into account.Comment: 14 pages, 1 figur

    Quark--antiquark states and their radiative transitions in terms of the spectral integral equation. {\Huge II.} Charmonia

    Full text link
    In the precedent paper of the authors (hep-ph/0510410), the bbˉb\bar b states were treated in the framework of the spectral integral equation, together with simultaneous calculations of radiative decays of the considered bottomonia. In the present paper, such a study is carried out for the charmonium (ccˉ)(c\bar c) states. We reconstruct the interaction in the ccˉc\bar c-sector on the basis of data for the charmonium levels with JPC=0−+J^{PC}=0^{-+}, 1−−1^{--}, 0++0^{++}, 1++1^{++}, 2++2^{++}, 1+−1^{+-} and radiative transitions ψ(2S)â†’ÎłÏ‡c0(1P)\psi(2S)\to\gamma\chi_{c0}(1P), ÎłÏ‡c1(1P)\gamma\chi_{c1}(1P), ÎłÏ‡c2(1P)\gamma\chi_{c2}(1P), γηc(1S)\gamma\eta_{c}(1S) and χc0(1P)\chi_{c0}(1P), χc1(1P)\chi_{c1}(1P), χc2(1P)→γJ/ψ\chi_{c2}(1P)\to\gamma J/\psi. The ccˉc\bar c levels and their wave functions are calculated for the radial excitations with n≀6n\le 6. Also, we determine the ccˉc\bar c component of the photon wave function using the e+e−e^+e^- annihilation data: e+e−→J/ψ(3097)e^+e^- \to J/\psi(3097), ψ(3686)\psi(3686), ψ(3770)\psi(3770), ψ(4040)\psi(4040), ψ(4160) \psi(4160), ψ(4415)\psi(4415) and perform the calculations of the partial widths of the two-photon decays for the n=1n=1 states: ηc0(1S)\eta_{c0}(1S), χc0(1P)\chi_{c0}(1P), χc2(1P)→γγ\chi_{c2}(1P)\to\gamma\gamma, and n=2n=2 states: ηc0(2S)→γγ\eta_{c0}(2S)\to\gamma\gamma, χc0(2P)\chi_{c0}(2P), χc2(2P)→γγ\chi_{c2}(2P)\to \gamma\gamma. We discuss the status of the recently observed ccˉc\bar c states X(3872) and Y(3941): according to our results, the X(3872) can be either χc1(2P)\chi_{c1}(2P) or ηc2(1D)\eta_{c2}(1D), while Y(3941) is χc2(2P)\chi_{c2}(2P).Comment: 24 pages, 9 figure

    Quark-diquark Systematics of Baryons: Spectral Integral Equations for Systems Composed by Light Quarks

    Full text link
    For baryons composed by the light quarks (q=u,dq=u,d) we write spectral integral equation using the notion of two diquarks: (i) axial--vector state, D11D^{1}_{1}, with the spin SD=1S_D=1 and isospin ID=1I_D=1 and (ii) scalar one, D00D^{0}_{0}, with the spin SD=0S_D=0 and isospin ID=0I_D=0. We present spectral integral equations for the qD00qD^{0}_{0} and qD11qD^{1}_{1} states taking into account quark--diquark confinement interaction.Comment: 13 pages, 2 figure

    On the exchange of momentum over the open ocean

    Get PDF
    Author Posting. © American Meteorological Society, 2013. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Physical Oceanography 43 (2013): 1589–1610, doi:10.1175/JPO-D-12-0173.1.This study investigates the exchange of momentum between the atmosphere and ocean using data collected from four oceanic field experiments. Direct covariance estimates of momentum fluxes were collected in all four experiments and wind profiles were collected during three of them. The objective of the investigation is to improve parameterizations of the surface roughness and drag coefficient used to estimate the surface stress from bulk formulas. Specifically, the Coupled Ocean–Atmosphere Response Experiment (COARE) 3.0 bulk flux algorithm is refined to create COARE 3.5. Oversea measurements of dimensionless shear are used to investigate the stability function under stable and convective conditions. The behavior of surface roughness is then investigated over a wider range of wind speeds (up to 25 m s−1) and wave conditions than have been available from previous oversea field studies. The wind speed dependence of the Charnock coefficient α in the COARE algorithm is modified to , where m = 0.017 m−1 s and b = −0.005. When combined with a parameterization for smooth flow, this formulation gives better agreement with the stress estimates from all of the field programs at all winds speeds with significant improvement for wind speeds over 13 m s−1. Wave age– and wave slope–dependent parameterizations of the surface roughness are also investigated, but the COARE 3.5 wind speed–dependent formulation matches the observations well without any wave information. The available data provide a simple reason for why wind speed–, wave age–, and wave slope–dependent formulations give similar results—the inverse wave age varies nearly linearly with wind speed in long-fetch conditions for wind speeds up to 25 m s−1.This work was funded by the National Science Foundation Grant OCE04-24536 as part of the CLIVAR Mode Water Dynamics Experiment (CLIMODE) and the Office of Naval Research Grant N00014-05-1-0139 as part of the CBLAST-LOW program.2014-02-0

    The International Surface Pressure Databank version 2

    Get PDF
    The International Surface Pressure Databank (ISPD) is the world's largest collection of global surface and sea-level pressure observations. It was developed by extracting observations from established international archives, through international cooperation with data recovery facilitated by the Atmospheric Circulation Reconstructions over the Earth (ACRE) initiative, and directly by contributing universities, organizations, and countries. The dataset period is currently 1768–2012 and consists of three data components: observations from land stations, marine observing systems, and tropical cyclone best track pressure reports. Version 2 of the ISPD (ISPDv2) was created to be observational input for the Twentieth Century Reanalysis Project (20CR) and contains the quality control and assimilation feedback metadata from the 20CR. Since then, it has been used for various general climate and weather studies, and an updated version 3 (ISPDv3) has been used in the ERA-20C reanalysis in connection with the European Reanalysis of Global Climate Observations project (ERA-CLIM). The focus of this paper is on the ISPDv2 and the inclusion of the 20CR feedback metadata. The Research Data Archive at the National Center for Atmospheric Research provides data collection and access for the ISPDv2, and will provide access to future versions
    • 

    corecore