244 research outputs found
Measurements of Freestream Fluctuations in the NASA Langley 20-Inch Mach 6 Tunnel
An experimental campaign was conducted to measure and to characterize the freestream disturbance levels in the NASA Langley Research Center 20-Inch Mach 6 Wind Tunnel. A pitot rake was instrumented with fast pressure transducers, hot wires, and an atomic layer thermopile to quantify the fluctuation levels of pressure, mass flux, and heat flux, respectively. In conjunction with these probe-based measurements, focused laser differential interferometry was used to optically measure density fluctuations. Measurements were made at five nominal different unit Reynolds numbers ranging from (3.28 to 26.5) times 10 (sup 6) per meter. The rake was positioned at two different stream-wise locations and several different roll angles to measure flow uniformity within the test section. In general, noise levels were spatially consistent within the tested region. Pitot pressure fluctuation levels ranged from 0.84 percent at the highest Reynolds number tested to 1.89 percent at the lowest Reynolds number tested. Freestream mass-flux fluctuations remained relatively constant between 1.8-2.5 percent of the freestream. The pressure transducers were also used to determine the dominant disturbance speed and angle of propagation. The disturbances were estimated to travel at approximately 54-81 percent of the freestream speed at an angle of approximately 21-44 degrees from the freestream direction, but these measurements had a significant amount of uncertainty. A comparison to previous measurements of pressure made in 2012 and of mass flux made in 1994 show almost no change in the RMS (Root Mean Square) fluctuation of these flow quantities
Facilitating Pupil Thinking About Information Literacy
Whilst information literacy is frequently taught through the imposition on learners of an established framework, this paper suggests a different approach by taking a lead from James Herring’s ideas. Specifically, it provides guidance to school-based information professionals who would like to encourage their pupils to devise their own flexible, information literacy models which are unique to them. Drawing on existing material in information science and wider thought, it proposes areas for coverage and considers how information professionals may support the dynamic process of model construction. It is recommended that those who are intent on facilitating the creation of personal information literacy models help pupils to identify the roles they take on in their lives, to reflect on the information needs that result, to ascertain the information they require in particular situations, to explore their information-seeking activities, to consider means by which information can be captured and to give thought as to how the information they have accessed may be used. This framework is, however, by no means rigid and readers are, of course, free to make their own adjustments
Neighbourhood food environment and gestational diabetes in New York City: Neighbourhood food environment and gestational diabetes
The association between neighbourhood characteristics and gestational diabetes has not been examined previously. We investigated the relationship between the number of healthy food outlets (supermarkets; fruit/vegetable and natural food stores), and unhealthy food outlets (fast food; pizza; bodegas; bakeries; convenience, candy/nut and meat stores) in census tract of residence, and gestational diabetes in New York City. Gestational diabetes, census tract and individual-level covariates were ascertained from linked birth-hospital data for 210 926 singleton births from 2001 to 2002 and linked to commercial data on retail food outlets. Adjusted odds ratios (aOR) were estimated using a multilevel logistic model
py4DSTEM: a software package for multimodal analysis of four-dimensional scanning transmission electron microscopy datasets
Scanning transmission electron microscopy (STEM) allows for imaging,
diffraction, and spectroscopy of materials on length scales ranging from
microns to atoms. By using a high-speed, direct electron detector, it is now
possible to record a full 2D image of the diffracted electron beam at each
probe position, typically a 2D grid of probe positions. These 4D-STEM datasets
are rich in information, including signatures of the local structure,
orientation, deformation, electromagnetic fields and other sample-dependent
properties. However, extracting this information requires complex analysis
pipelines, from data wrangling to calibration to analysis to visualization, all
while maintaining robustness against imaging distortions and artifacts. In this
paper, we present py4DSTEM, an analysis toolkit for measuring material
properties from 4D-STEM datasets, written in the Python language and released
with an open source license. We describe the algorithmic steps for dataset
calibration and various 4D-STEM property measurements in detail, and present
results from several experimental datasets. We have also implemented a simple
and universal file format appropriate for electron microscopy data in py4DSTEM,
which uses the open source HDF5 standard. We hope this tool will benefit the
research community, helps to move the developing standards for data and
computational methods in electron microscopy, and invite the community to
contribute to this ongoing, fully open-source project
The Importance of Craniofacial Sutures in Biomechanical Finite Element Models of the Domestic Pig
Craniofacial sutures are a ubiquitous feature of the vertebrate skull. Previous experimental work has shown that bone strain magnitudes and orientations often vary when moving from one bone to another, across a craniofacial suture. This has led to the hypothesis that craniofacial sutures act to modify the strain environment of the skull, possibly as a mode of dissipating high stresses generated during feeding or impact. This study tests the hypothesis that the introduction of craniofacial sutures into finite element (FE) models of a modern domestic pig skull would improve model accuracy compared to a model without sutures. This allowed the mechanical effects of sutures to be assessed in isolation from other confounding variables. These models were also validated against strain gauge data collected from the same specimen ex vivo. The experimental strain data showed notable strain differences between adjacent bones, but this effect was generally not observed in either model. It was found that the inclusion of sutures in finite element models affected strain magnitudes, ratios, orientations and contour patterns, yet contrary to expectations, this did not improve the fit of the model to the experimental data, but resulted in a model that was less accurate. It is demonstrated that the presence or absence of sutures alone is not responsible for the inaccuracies in model strain, and is suggested that variations in local bone material properties, which were not accounted for by the FE models, could instead be responsible for the pattern of results
Bayesian Methods for Correcting Misclassification: An Example from Birth Defects Epidemiology
Cleft lip with or without cleft palate (CL/P) and cleft palate only (CPO) are common congenital malformations. Numerous epidemiologic studies have shown an increased risk for orofacial clefts among children whose mothers smoked during early pregnancy; however, there is concern that the results of these studies may have been biased because of exposure misclassification. The purpose of this study is to use previous research on the reliability of self-reported cigarette smoking to produce corrected point estimates (and associated credible intervals) of the effect of maternal smoking on children’s risk of clefts
Correlative analysis of structure and chemistry of LixFePO4 platelets using 4D-STEM and X-ray ptychography
Lithium iron phosphate (LixFePO4), a cathode material used in rechargeable
Li-ion batteries, phase separates upon de/lithiation under equilibrium. The
interfacial structure and chemistry within these cathode materials affects
Li-ion transport, and therefore battery performance. Correlative imaging of
LixFePO4 was performed using four-dimensional scanning transmission electron
microscopy (4D-STEM), scanning transmission X-ray microscopy (STXM), and X-ray
ptychography in order to analyze the local structure and chemistry of the same
particle set. Over 50,000 diffraction patterns from 10 particles provided
measurements of both structure and chemistry at a nanoscale spatial resolution
(16.6-49.5 nm) over wide (several micron) fields-of-view with statistical
robustness.LixFePO4 particles at varying stages of delithiation were measured
to examine the evolution of structure and chemistry as a function of
delithiation. In lithiated and delithiated particles, local variations were
observed in the degree of lithiation even while local lattice structures
remained comparatively constant, and calculation of linear coefficients of
chemical expansion suggest pinning of the lattice structures in these
populations. Partially delithiated particles displayed broadly core-shell-like
structures, however, with highly variable behavior both locally and per
individual particle that exhibited distinctive intermediate regions at the
interface between phases, and pockets within the lithiated core that correspond
to FePO4 in structure and chemistry.The results provide insight into the
LixFePO4 system, subtleties in the scope and applicability of Vegards law
(linear lattice parameter-composition behavior) under local versus global
measurements, and demonstrate a powerful new combination of experimental and
analytical modalities for bridging the crucial gap between local and
statistical characterization.Comment: 17 pages, 4 figure
Short-term variability in Greenland Ice Sheet motion forced by time-varying meltwater inputs: implications for the relationship between subglacial drainage system behavior and ice velocity.
High resolution measurements of ice motion along a -120 km transect in a land-terminating section of the GrIS reveal short-term velocity variations (<1 day), which are forced by rapid variations in meltwater input to the subglacial drainage system from the ice sheet surface. The seasonal changes in ice velocity at low elevations (<1000 m) are dominated by events lasting from 1 day to 1 week, although daily cycles are largely absent at higher elevations, reflecting different patterns of meltwater input. Using a simple model of subglacial conduit behavior we show that the seasonal record of ice velocity can be understood in terms of a time-varying water input to a channelized subglacial drainage system. Our investigation substantiates arguments that variability in the duration and rate, rather than absolute volume, of meltwater delivery to the subglacial drainage system are important controls on seasonal patterns of subglacial water pressure, and therefore ice velocity. We suggest that interpretations of hydro-dynamic behavior in land-terminating sections of the GrIS margin which rely on steady state drainage theories are unsuitable for making predictions about the effect of increased summer ablation on future rates of ice motion. © 2012. American Geophysical Union
Oxidation of hydrocarbons by aqueous platinum salts: mechanism and selectivity
Water-soluble organic compounds are selectively oxidized by aqueous solutions of chloroplatinum(II) and chloroplatinum(IV) salts. p-Toluenesulfonic acid undergoes stepwise hydroxylation to the corresponding alcohol and aldehyde, with no further oxidation to the carboxylic acid; p-ethylbenzenesulfonic acid is functionalized at both the benzylic and methyl positions. Ethanol is converted to a spectrum of C_2 (chloro)oxygenates, including ethylene glycol and 2-chloroethanol, products resulting from methyl fundionalization. n-Propanol is also significantly attacked at the methyl position. ^(13)C labeling and kinetics studies were used to elucidate mechanistic pathways. The reactivity of a methyl group C-H bond is at least as high as that of a C-H bond CY to oxygen, in contrast to most alkane conversion systems
Oxidation of hydrocarbons by aqueous platinum salts: mechanism and selectivity
Water-soluble organic compounds are selectively oxidized by aqueous solutions of chloroplatinum(II) and chloroplatinum(IV) salts. p-Toluenesulfonic acid undergoes stepwise hydroxylation to the corresponding alcohol and aldehyde, with no further oxidation to the carboxylic acid; p-ethylbenzenesulfonic acid is functionalized at both the benzylic and methyl positions. Ethanol is converted to a spectrum of C_2 (chloro)oxygenates, including ethylene glycol and 2-chloroethanol, products resulting from methyl fundionalization. n-Propanol is also significantly attacked at the methyl position. ^(13)C labeling and kinetics studies were used to elucidate mechanistic pathways. The reactivity of a methyl group C-H bond is at least as high as that of a C-H bond CY to oxygen, in contrast to most alkane conversion systems
- …