46 research outputs found

    Spherical panorama compositing through depth estimation

    Get PDF
    In this paper, we propose to work in the 2.5D space of the scene to facilitate composition of new spherical panoramas. For adding depths to spherical panoramas, we extend an existing method that was designed to estimate relative depths from a single perspective image through user interaction.We analyze the difficulties to interactively provide such depth information for spherical panoramas, through three different types of presentation. Then, we propose a set of basic tools to interactively manage the relative depths of the panoramas in order to obtain a composition in a very simple way. We conclude that the relative depths obtained by the extended depth estimationmethod are enough for the purpose of compositing newphotorealistic panoramas through a few elementary editing tools.Funding for open access charge: CRUE-Universitat Jaume

    The E-ELT first light spectrograph HARMONI: capabilities and modes

    Get PDF
    Trabajo presentado en SPIE Astronomical Telescopes, celebrado en San Diego (California), del 26 de junio al 1 de julio de 2016HARMONI is the E-ELT's first light visible and near-infrared integral field spectrograph. It will provide four different spatial scales, ranging from coarse spaxels of 60 × 30 mas best suited for seeing limited observations, to 4 mas spaxels that Nyquist sample the diffraction limited point spread function of the E-ELT at near-infrared wavelengths. Each spaxel scale may be combined with eleven spectral settings, that provide a range of spectral resolving powers (R 3500, 7500 and 20000) and instantaneous wavelength coverage spanning the 0.5 - 2.4 ¿m wavelength range of the instrument. In autumn 2015, the HARMONI project started the Preliminary Design Phase, following signature of the contract to design, build, test and commission the instrument, signed between the European Southern Observatory and the UK Science and Technology Facilities Council. Crucially, the contract also includes the preliminary design of the HARMONI Laser Tomographic Adaptive Optics system. The instrument's technical specifications were finalized in the period leading up to contract signature. In this paper, we report on the first activity carried out during preliminary design, defining the baseline architecture for the system, and the trade-off studies leading up to the choice of baseline

    Association Between Preexisting Versus Newly Identified Atrial Fibrillation and Outcomes of Patients With Acute Pulmonary Embolism

    Get PDF
    Background Atrial fibrillation (AF) may exist before or occur early in the course of pulmonary embolism (PE). We determined the PE outcomes based on the presence and timing of AF. Methods and Results Using the data from a multicenter PE registry, we identified 3 groups: (1) those with preexisting AF, (2) patients with new AF within 2 days from acute PE (incident AF), and (3) patients without AF. We assessed the 90-day and 1-year risk of mortality and stroke in patients with AF, compared with those without AF (reference group). Among 16 497 patients with PE, 792 had preexisting AF. These patients had increased odds of 90-day all-cause (odds ratio [OR], 2.81; 95% CI, 2.33-3.38) and PE-related mortality (OR, 2.38; 95% CI, 1.37-4.14) and increased 1-year hazard for ischemic stroke (hazard ratio, 5.48; 95% CI, 3.10-9.69) compared with those without AF. After multivariable adjustment, preexisting AF was associated with significantly increased odds of all-cause mortality (OR, 1.91; 95% CI, 1.57-2.32) but not PE-related mortality (OR, 1.50; 95% CI, 0.85-2.66). Among 16 497 patients with PE, 445 developed new incident AF within 2 days of acute PE. Incident AF was associated with increased odds of 90-day all-cause (OR, 2.28; 95% CI, 1.75-2.97) and PE-related (OR, 3.64; 95% CI, 2.01-6.59) mortality but not stroke. Findings were similar in multivariable analyses. Conclusions In patients with acute symptomatic PE, both preexisting AF and incident AF predict adverse clinical outcomes. The type of adverse outcomes may differ depending on the timing of AF onset.info:eu-repo/semantics/publishedVersio

    Construction progress of WEAVE: the next generation wide-field spectroscopy facility for the William Herschel Telescope

    Get PDF
    We present an update on the overall construction progress of the WEAVE next-generation spectroscopy facility for the William Herschel Telescope (WHT), now that all the major fabrication contracts are in place. We also present a summary of the current planning behind the 5-year initial phase of survey operations, and some detailed end-to-end science simulations that have been effected to evaluate the final on-sky performance after data processing. WEAVE will provide optical ground-based follow up of ground-based (LOFAR) and space-based (Gaia) surveys. WEAVE is a multi-object and multi-IFU facility utilizing a new 2-degree prime focus field of view at the WHT, with a buffered pick-and-place positioner system hosting 1000 multi-object (MOS) fibres, 20 integral field units, or a single large IFU for each observation. The fibres are fed to a single (dual-beam) spectrograph, with total of 16k spectral pixels, located within the WHT GHRIL enclosure on the telescope Nasmyth platform, supporting observations at R 5000 over the full 370-1000nm wavelength range in a single exposure, or a high resolution mode with limited coverage in each arm at R 20000. The project has experienced some delays in procurement and now has first light expected for the middle of 2019

    COVID-19 symptoms at hospital admission vary with age and sex: results from the ISARIC prospective multinational observational study

    Get PDF
    Background: The ISARIC prospective multinational observational study is the largest cohort of hospitalized patients with COVID-19. We present relationships of age, sex, and nationality to presenting symptoms. Methods: International, prospective observational study of 60 109 hospitalized symptomatic patients with laboratory-confirmed COVID-19 recruited from 43 countries between 30 January and 3 August 2020. Logistic regression was performed to evaluate relationships of age and sex to published COVID-19 case definitions and the most commonly reported symptoms. Results: ‘Typical’ symptoms of fever (69%), cough (68%) and shortness of breath (66%) were the most commonly reported. 92% of patients experienced at least one of these. Prevalence of typical symptoms was greatest in 30- to 60-year-olds (respectively 80, 79, 69%; at least one 95%). They were reported less frequently in children (≀ 18 years: 69, 48, 23; 85%), older adults (≄ 70 years: 61, 62, 65; 90%), and women (66, 66, 64; 90%; vs. men 71, 70, 67; 93%, each P < 0.001). The most common atypical presentations under 60 years of age were nausea and vomiting and abdominal pain, and over 60 years was confusion. Regression models showed significant differences in symptoms with sex, age and country. Interpretation: This international collaboration has allowed us to report reliable symptom data from the largest cohort of patients admitted to hospital with COVID-19. Adults over 60 and children admitted to hospital with COVID-19 are less likely to present with typical symptoms. Nausea and vomiting are common atypical presentations under 30 years. Confusion is a frequent atypical presentation of COVID-19 in adults over 60 years. Women are less likely to experience typical symptoms than men

    Upcycling of agricultural residues for additive manufacturing: corn straw waste as reinforcing agent in acrylonitrile-butadiene-styrene composite matrix

    No full text
    More than 1.2 billion tonnes of corn straw wastes (CSW) are generated worldwide each year. CSW is a fibrous, inexpensive, light material which is highly available. Currently, there are no pathways to manage such amount of CSW, being mainly burned in open field, with the environmental impact that this entails. In this work, the upcycling of CSW as a reinforcement material to be integrated in acrylonitrile-butadiene-styrene (ABS) composite matrix for additive manufacturing applications is proposed. ABS+CSW composite material has been used to manufacture 3D printing filaments, aiming to fabricate products via fused filament fabrication techniques. Standardized tensile and flexural test specimens were manufactured incorporating different contents of CSW (ranging from 1 to 5%, w/w) and glycerol (1%, w/w) to ABS: B1-1% (sample with 1% (w/w) of CSW), B2-3% (sample with 3% (w/w) of CSW), and B3-5% (sample with 5% (w/w) of CSW). The maximum tensile stress of the composites slightly increased by 1.3% (for B1-1%), exceeding 10% when B1-3% was used, compared to ABS. Moreover, it decreased to −3% for the specimen made with B3-5. In general terms, the higher the biomass content, the higher the flexural stress. However, the exception was provided by B1-1%, as the flexural stress decreased by 5% compared to ABS. The maximum flexural stress value was reached at 3% SCW, providing a value above 17%, compared to ABS and above 24%, compared to B1-1%. Furthermore, the incorporation of CSW into the ABS matrix resulted in lighter 3D printing filament materials and products compared to the use of ABS

    Upcycling of agricultural residues for additive manufacturing: corn straw waste as reinforcing agent in acrylonitrile-butadiene-styrene composite matrix

    No full text
    More than 1.2 billion tonnes of corn straw wastes (CSW) are generated worldwide each year. CSW is a fibrous, inexpensive, light material which is highly available. Currently, there are no pathways to manage such amount of CSW, being mainly burned in open field, with the environmental impact that this entails. In this work, the upcycling of CSW as a reinforcement material to be integrated in acrylonitrile-butadiene-styrene (ABS) composite matrix for additive manufacturing applications is proposed. ABS+CSW composite material has been used to manufacture 3D printing filaments, aiming to fabricate products via fused filament fabrication techniques. Standardized tensile and flexural test specimens were manufactured incorporating different contents of CSW (ranging from 1 to 5%, w/w) and glycerol (1%, w/w) to ABS: B1-1% (sample with 1% (w/w) of CSW), B2-3% (sample with 3% (w/w) of CSW), and B3-5% (sample with 5% (w/w) of CSW). The maximum tensile stress of the composites slightly increased by 1.3% (for B1-1%), exceeding 10% when B1-3% was used, compared to ABS. Moreover, it decreased to −3% for the specimen made with B3-5. In general terms, the higher the biomass content, the higher the flexural stress. However, the exception was provided by B1-1%, as the flexural stress decreased by 5% compared to ABS. The maximum flexural stress value was reached at 3% SCW, providing a value above 17%, compared to ABS and above 24%, compared to B1-1%. Furthermore, the incorporation of CSW into the ABS matrix resulted in lighter 3D printing filament materials and products compared to the use of ABS

    The hardware control system for WEAVE at the William Herschel Telescope

    No full text
    International audienceWhen an alt-azimuth telescope is tracking at a specific field, it is necessary to use a de-rotator system to compensate the Earth's rotation of the field of view. In order, to keep the telescope tracking the field of view selected, the instrument will need to a rotation system for compensating it [1]. The new WEAVE [2] two degrees field of view requires a new field de-rotator on the top-end of the telescope. The rotator system has been designed with a direct drive motor which eliminates the need for mechanical transmission elements such as gearboxes, speed reducers, and worm gear drives. This design is a huge advantage for the system performance and lifetime because it eliminates undesirable characteristics such as long-time drift, elasticity, and backlash. The hardware control system has been developed with a Rockwell servo-drive and controller. The rotator has to be controlled by the high-level software which is also responsible for the telescope control. This paper summarizes the model developed for simulating and the software which will be used to accept the rotator system. A performance study is also carried out to test the CIP (Common Industrial Protocol) for communications between the high-level software and the rotator hardware
    corecore