119 research outputs found
Counter-rotation in an orbitally shaken glass of beer
Swirling a glass of wine induces a rotating gravity wave along with a mean
flow rotating in the direction of the applied swirl. Surprisingly, when the
liquid is covered by a floating cohesive material, for instance a thin layer of
foam in a glass of beer, the mean rotation at the surface can reverse. This
intriguing counter-rotation can also be observed with coffee cream, tea scum,
cohesive powder, provided that the wave amplitude is small and the surface
covering fraction is large. Here we show that the mechanism for
counter-rotation is a fluid analog of the rolling without slipping motion of a
planetary gear train: for sufficiently large density, the covered surface
behaves as a rigid raft transported by the rotating sloshing wave, and friction
with the near-wall low-velocity fluid produces a negative torque which can
overcome the positive Stokes drift rotation induced by the wave.Comment: To appear in EPL (2018
Libration driven multipolar instabilities
We consider rotating flows in non-axisymmetric enclosures that are driven by
libration, i.e. by a small periodic modulation of the rotation rate. Thanks to
its simplicity, this model is relevant to various contexts, from industrial
containers (with small oscillations of the rotation rate) to fluid layers of
terrestial planets (with length-of-day variations). Assuming a multipolar
-fold boundary deformation, we first obtain the two-dimensional basic flow.
We then perform a short-wavelength local stability analysis of the basic flow,
showing that an instability may occur in three dimensions. We christen it the
Libration Driven Multipolar Instability (LDMI). The growth rates of the LDMI
are computed by a Floquet analysis in a systematic way, and compared to
analytical expressions obtained by perturbation methods. We then focus on the
simplest geometry allowing the LDMI, a librating deformed cylinder. To take
into account viscous and confinement effects, we perform a global stability
analysis, which shows that the LDMI results from a parametric resonance of
inertial modes. Performing numerical simulations of this librating cylinder, we
confirm that the basic flow is indeed established and report the first
numerical evidence of the LDMI. Numerical results, in excellent agreement with
the stability results, are used to explore the non-linear regime of the
instability (amplitude and viscous dissipation of the driven flow). We finally
provide an example of LDMI in a deformed spherical container to show that the
instability mechanism is generic. Our results show that the previously studied
libration driven elliptical instability simply corresponds to the particular
case of a wider class of instabilities. Summarizing, this work shows that
any oscillating non-axisymmetric container in rotation may excite intermittent,
space-filling LDMI flows, and this instability should thus be easy to observe
experimentally
Libration-driven multipolar instabilities
We consider rotating flows in non-axisymmetric enclosures that are driven by libration, i.e. by a small periodic modulation of the rotation rate. Thanks to its simplicity, this model is relevant to various contexts, from industrial containers (with small oscillations of the rotation rate) to fluid layers of terrestrial planets (with length-of-day variations). Assuming a multipolar -fold boundary deformation, we first obtain the two-dimensional basic flow. We then perform a short-wavelength local stability analysis of the basic flow, showing that an instability may occur in three dimensions. We christen it the libration-driven multipolar instability (LDMI). The growth rates of the LDMI are computed by a Floquet analysis in a systematic way, and compared to analytical expressions obtained by perturbation methods. We then focus on the simplest geometry allowing the LDMI, a librating deformed cylinder. To take into account viscous and confinement effects, we perform a global stability analysis, which shows that the LDMI results from a parametric resonance of inertial modes. Performing numerical simulations of this librating cylinder, we confirm that the basic flow is indeed established and report the first numerical evidence of the LDMI. Numerical results, in excellent agreement with the stability results, are used to explore the nonlinear regime of the instability (amplitude and viscous dissipation of the driven flow). We finally provide an example of LDMI in a deformed spherical container to show that the instability mechanism is generic. Our results show that the previously studied libration-driven elliptical instability simply corresponds to the particular case of a wider class of instabilities. Summarizing, this work shows that any oscillating non-axisymmetric container in rotation may excite intermittent, space-filling LDMI flows, and this instability should thus be easy to observe experimentall
Influence of high permeability disks in an axisymmetric model of the Cadarache dynamo experiment
Numerical simulations of the kinematic induction equation are performed on a
model configuration of the Cadarache von-K\'arm\'an-Sodium dynamo experiment.
The effect of a localized axisymmetric distribution of relative permeability
{\mu} that represents soft iron material within the conducting fluid flow is
investigated. The critical magnetic Reynolds number Rm^c for dynamo action of
the first non-axisymmetric mode roughly scales like
Rm^c({\mu})-Rm^c({\mu}->infinity) ~ {\mu}^(-1/2) i.e. the threshold decreases
as {\mu} increases. This scaling law suggests a skin effect mechanism in the
soft iron disks. More important with regard to the Cadarache dynamo experiment,
we observe a purely toroidal axisymmetric mode localized in the high
permeability disks which becomes dominant for large {\mu}. In this limit, the
toroidal mode is close to the onset of dynamo action with a (negative)
growth-rate that is rather independent of the magnetic Reynolds number. We
qualitatively explain this effect by paramagnetic pumping at the fluid/disk
interface and propose a simplified model that quantitatively reproduces
numerical results. The crucial role of the high permeability disks for the mode
selection in the Cadarache dynamo experiment cannot be inferred from
computations using idealized pseudo-vacuum boundary conditions (H x n = 0).Comment: 16 pages, 9 Figures, published in New Journal of Physics 14(2012),
05300
Recommended from our members
Characterizing coal and mineral mines as a regional source of stress to stream fish assemblages
Mining impacts on stream systems have historically been studied over small spatial scales, yet
investigations over large areas may be useful for characterizing mining as a regional source of stress to
stream fishes. The associations between co-occurring stream fish assemblages and densities of various
“classes” of mining occurring in the same catchments were tested using threshold analysis. Threshold
analysis identifies the point at which fish assemblages change substantially from best available habitat
conditions with increasing disturbance. As this occurred over large regions, species comprising
fish assemblages were represented by various functional traits as well as other measures of interest to
management (characterizing reproductive ecology and life history, habitat preferences, trophic ecology,
assemblage diversity and evenness, tolerance to anthropogenic disturbance and state-recognized game
species). We used two threshold detection methods: change-point analysis with indicator analysis and
piecewise linear regression. We accepted only those thresholds that were highly statistically significant
(p ≤ 0.01) for both techniques and overlapped within ≤ 5% error. We found consistent, wedge-shaped
declines in multiple fish metrics with increasing levels of mining in catchments, suggesting mines are a
regional source of disturbance. Threshold responses were consistent across the three ecoregions
occurring at low mine densities. For 47.2% of the significant thresholds, a density of only ≤ 0.01 mines/km²
caused a threshold response. In fact, at least 25% of streams in each of our three study ecoregions have
mine densities in their catchments with the potential to affect fish assemblages. Compared to other
anthropogenic impacts assessed over large areas (agriculture, impervious surface or urban land use),
mining had a more pronounced and consistent impact on fish assemblages.Keywords: Game fishes, Rivers, Mining, Threshold analysis, Landscape influences, Fish functional trait
Presenilin/γ-Secretase Regulates Neurexin Processing at Synapses
Neurexins are a large family of neuronal plasma membrane proteins, which function as trans-synaptic receptors during synaptic differentiation. The binding of presynaptic neurexins to postsynaptic partners, such as neuroligins, has been proposed to participate in a signaling pathway that regulates synapse formation/stabilization. The identification of mutations in neurexin genes associated with autism and mental retardation suggests that dysfunction of neurexins may underlie synaptic defects associated with brain disorders. However, the mechanisms that regulate neurexin function at synapses are still unclear. Here, we show that neurexins are proteolytically processed by presenilins (PS), the catalytic components of the γ-secretase complex that mediates the intramembraneous cleavage of several type I membrane proteins. Inhibition of PS/γ-secretase by using pharmacological and genetic approaches induces a drastic accumulation of neurexin C-terminal fragments (CTFs) in cultured rat hippocampal neurons and mouse brain. Neurexin-CTFs accumulate mainly at the presynaptic terminals of PS conditional double knockout (PS cDKO) mice lacking both PS genes in glutamatergic neurons of the forebrain. The fact that loss of PS function enhances neurexin accumulation at glutamatergic terminals mediated by neuroligin-1 suggests that PS regulate the processing of neurexins at glutamatergic synapses. Interestingly, presenilin 1 (PS1) is recruited to glutamatergic terminals mediated by neuroligin-1, thus concentrating PS1 at terminals containing β-neurexins. Furthermore, familial Alzheimer's disease (FAD)-linked PS1 mutations differentially affect β-neurexin-1 processing. Expression of PS1 M146L and PS1 H163R mutants in PS−/− cells rescues the processing of β-neurexin-1, whereas PS1 C410Y and PS1 ΔE9 fail to rescue the processing defect. These results suggest that PS regulate the synaptic function and processing of neurexins at glutamatergic synapses, and that impaired neurexin processing by PS may play a role in FAD
Long Distance Movements and Disjunct Spatial Use of Harbor Seals (Phoca vitulina) in the Inland Waters of the Pacific Northwest
BACKGROUND: Worldwide, adult harbor seals (Phoca vitulina) typically limit their movements and activity to <50 km from their primary haul-out site. As a result, the ecological impact of harbor seals is viewed as limited to relatively small spatial scales. Harbor seals in the Pacific Northwest are believed to remain <30 km from their primary haul-out site, one of several contributing factors to the current stock designation. However, movement patterns within the region are not well understood because previous studies have used radio-telemetry, which has range limitations. Our objective was to use satellite-telemetry to determine the regional spatial scale of movements. METHODOLOGY/PRINCIPAL FINDINGS: Satellite tags were deployed on 20 adult seals (n=16 males and 4 females) from two rocky reefs and a mudflat-bay during April-May 2007. Standard filtering algorithms were used to remove outliers, resulting in an average (± SD) of 693 (± 377) locations per seal over 110 (± 32) days. A particle filter was implemented to interpolate locations temporally and decrease erroneous locations on land. Minimum over-water distances were calculated between filtered locations and each seal's capture site to show movement of seals over time relative to their capture site, and we estimated utilization distributions from kernel density analysis to reflect spatial use. Eight males moved >100 km from their capture site at least once, two of which traveled round trip to and from the Pacific coast, a total distance >400 km. Disjunct spatial use patterns observed provide new insight into general harbor seal behavior. CONCLUSIONS/SIGNIFICANCE: Long-distance movements and disjunct spatial use of adult harbor seals have not been reported for the study region and are rare worldwide in such a large proportion of tagged individuals. Thus, the ecological influence of individual seals may reach farther than previously assumed
The Role of Presenilin and its Interacting Proteins in the Biogenesis of Alzheimer’s Beta Amyloid
The biogenesis and accumulation of the beta amyloid protein (Aβ) is a key event in the cascade of oxidative and inflammatory processes that characterises Alzheimer’s disease. The presenilins and its interacting proteins play a pivotal role in the generation of Aβ from the amyloid precursor protein (APP). In particular, three proteins (nicastrin, aph-1 and pen-2) interact with presenilins to form a large multi-subunit enzymatic complex (γ-secretase) that cleaves APP to generate Aβ. Reconstitution studies in yeast and insect cells have provided strong evidence that these four proteins are the major components of the γ-secretase enzyme. Current research is directed at elucidating the roles that each of these protein play in the function of this enzyme. In addition, a number of presenilin interacting proteins that are not components of γ-secretase play important roles in modulating Aβ production. This review will discuss the components of the γ-secretase complex and the role of presenilin interacting proteins on γ-secretase activity
- …