10 research outputs found

    Evolutionary insights into human DNA methylation

    Get PDF
    DNA methylation is a crucial epigenetic modification involved in numerous biological processes. However, despite its functional importance, the evolutionary history of this modification and the mechanisms diving such changes are poorly understood. The aim of this thesis is to provide a better understanding of DNA methylation in the context of human recent evolution. We identified and described hundreds of regions presenting a human-specific DNA methylation pattern compared to great apes. We also analyzed for the first time the relationship between DNA methylation changes and sequence evolution at both nucleotide and protein level. In summary, this research reveals new insights into the evolutionary properties of DNA methylation and the interpretation of inter-species non-coding variationLa metilación del ADN es una modificación epigenética implicada en numerosos procesos biológicos. Sin embargo, a pesar de su relevancia funcional, se sabe muy poco sobre su historia evolutiva y los mecanismos que generan estos cambios. El objetivo de esta tesis es proporcionar una mejor compresión de la metilación del ADN en el contexto de la evolución humana reciente. Hemos identificado y descrito cientos de regiones que presentan un patrón de metilación especifico de humanos. Así mismo, hemos analizado por primera vez la relación entre los cambios en metilación y la evolución de la secuencia tanto a nivel nucleotídico como proteico. En resumen, esta investigación revela nuevos conocimientos sobre las propiedades evolutivas de la metilación del ADN y la interpretación de la variación no codificante entre especies

    A panel of induced pluripotent stem cells from chimpanzees: a resource for comparative functional genomics

    No full text
    Comparative genomics studies in primates are restricted due to our limited access to samples. In order to gain better insight into the genetic processes that underlie variation in complex phenotypes in primates, we must have access to faithful model systems for a wide range of cell types. To facilitate this, we generated a panel of 7 fully characterized chimpanzee induced pluripotent stem cell (iPSC) lines derived from healthy donors. To demonstrate the utility of comparative iPSC panels, we collected RNA-sequencing and DNA methylation data from the chimpanzee iPSCs and the corresponding fibroblast lines, as well as from 7 human iPSCs and their source lines, which encompass multiple populations and cell types. We observe much less within-species variation in iPSCs than in somatic cells, indicating the reprogramming process erases many inter-individual differences. The low within-species regulatory variation in iPSCs allowed us to identify many novel inter-species regulatory differences of small magnitude.This work was supported by NIH grant GM077959 to YG as well as by grants from the California Institute for Regenerative Medicine (CIRM)/nCL1-00502 and TR01250 to JFL, and ERC Starting Grant 260372 and MICINN (Spain) BFU2011-28549 to TM-B. IGR is supported by a Sir Henry Wellcome Postdoctoral Fellowship; IHH is supported by FI Generalitat Catalunya; MCW is supported by an EMBO Long-Term Fellowship (ALTF 751-2014) and the European Commission Marie Curie Actions; NEB is supported by an NIH training grant (GM007197) and an NIH pre-doctoral award (F31 AG 044948); LCL is supported by a WRHR Career Development award (NIH K12 HD001259) and the UCSD Department of Reproductive Medicine; TRL and KS are supported by the UCSD Department of Reproductive Medicine; CLK is supported by a CTSA TL1 pre-doctoral fellowship (TR 432-7). We also acknowledge the generous support of the Yerkes Primate Center through their grant ORIP/OD P51OD011132

    DNA methylation: insights into human evolution

    No full text
    A fundamental initiative for evolutionary biologists is to understand the molecular basis underlying phenotypic diversity. A long-standing hypothesis states that species-specific traits may be explained by differences in gene regulation rather than differences at the protein level. Over the past few years, evolutionary studies have shifted from mere sequence comparisons to integrative analyses in which gene regulation is key to understanding species evolution. DNA methylation is an important epigenetic modification involved in the regulation of numerous biological processes. Nevertheless, the evolution of the human methylome and the processes driving such changes are poorly understood. Here, we review the close interplay between Cytosine-phosphate-Guanine (CpG) methylation and the underlying genome sequence, as well as its evolutionary impact. We also summarize the latest advances in the field, revisiting the main literature on human and nonhuman primates. We hope to encourage the scientific community to address the many challenges posed by the field of comparative epigenomics.TMB is supported by ICREA (www.icrea.cat), EMBO YIP (www.embo.org) 2013, MICINN BFU2014-55090-P (www.mecd.gob.es), BFU2015-7116-ERC and BFU2015-6215-ERC. AJS is supported by NIH (www.nih.gov) grants DA033660, HG006696, HD073731, and MH097018, and research grant 6-FY13-92 from the March of Dimes Foundation. IHH is supported by AGAUR (Generalitat de Catalunya, Spain; www.gencat.cat/agaur/) and RGP by a fellowship from MICINN (www.mecd.gob.es). We also acknowledge the Barcelona Zoo (Ajuntament de Barcelona) for an award to IHH

    DNA methylation contributes to natural human variation

    Get PDF
    DNA methylation patterns are important for establishing cell, tissue, and organism phenotypes, but little is known about their contribution to natural human variation. To determine their contribution to variability, we have generated genome-scale DNA methylation profiles of three human populations (Caucasian-American, African-American, and Han Chinese-American) and examined the differentially methylated CpG sites. The distinctly methylated genes identified suggest an influence of DNA methylation on phenotype differences, such as susceptibility to certain diseases and pathogens, and response to drugs and environmental agents. DNA methylation differences can be partially traced back to genetic variation, suggesting that differentially methylated CpG sites serve as evolutionarily established mediators between the genetic code and phenotypic variability. Notably, one-third of the DNA methylation differences were not associated with any genetic variation, suggesting that variation in population-specific sites takes place at the genetic and epigenetic levels, highlighting the contribution of epigenetic modification to natural human variationThe research leading to these results received funding from the European Research Council (ERC) grant EPINORC under agreement number268626,ERC StartingGrant(260372),NIHgrantsCA138461 and GM61388 (Pharmacogenomics Research Network), the MICINN Projects SAF2011-22803 andBFU2011-28549,the CellexFoundation, the European Community’s Seventh Framework Programme (FP7/2007-2013) from grant HEALTH-F5-2011-282510 (BLUEPRINT), and the Health and Science Departments of the Generalitat de Catalunya. I.H.H. is a fellow of the Generalitat de Catalunya (FI 2011). T.M.B. and M.E. are ICREA Research Professor

    DNA methylation contributes to natural human variation

    No full text
    DNA methylation patterns are important for establishing cell, tissue, and organism phenotypes, but little is known about their contribution to natural human variation. To determine their contribution to variability, we have generated genome-scale DNA methylation profiles of three human populations (Caucasian-American, African-American, and Han Chinese-American) and examined the differentially methylated CpG sites. The distinctly methylated genes identified suggest an influence of DNA methylation on phenotype differences, such as susceptibility to certain diseases and pathogens, and response to drugs and environmental agents. DNA methylation differences can be partially traced back to genetic variation, suggesting that differentially methylated CpG sites serve as evolutionarily established mediators between the genetic code and phenotypic variability. Notably, one-third of the DNA methylation differences were not associated with any genetic variation, suggesting that variation in population-specific sites takes place at the genetic and epigenetic levels, highlighting the contribution of epigenetic modification to natural human variationThe research leading to these results received funding from the European Research Council (ERC) grant EPINORC under agreement number268626,ERC StartingGrant(260372),NIHgrantsCA138461 and GM61388 (Pharmacogenomics Research Network), the MICINN Projects SAF2011-22803 andBFU2011-28549,the CellexFoundation, the European Community’s Seventh Framework Programme (FP7/2007-2013) from grant HEALTH-F5-2011-282510 (BLUEPRINT), and the Health and Science Departments of the Generalitat de Catalunya. I.H.H. is a fellow of the Generalitat de Catalunya (FI 2011). T.M.B. and M.E. are ICREA Research Professor

    The interplay between DNA methylation and sequence divergence in recent human evolution

    No full text
    Despite the increasing knowledge about DNA methylation, the understanding of human epigenome evolution is in its infancy. Using whole genome bisulfite sequencing we identified hundreds of differentially methylated regions (DMRs) in humans compared to non-human primates and estimated that ∼25% of these regions were detectable throughout several human tissues. Human DMRs were enriched for specific histone modifications and the majority were located distal to transcription start sites, highlighting the importance of regions outside the direct regulatory context. We also found a significant excess of endogenous retrovirus elements in human-specific hypomethylated.We reported for the first time a close interplay between inter-species genetic and epigenetic variation in regions of incomplete lineage sorting, transcription factor binding sites and human differentially hypermethylated regions. Specifically, we observed an excess of human-specific substitutions in transcription factor binding sites located within human DMRs, suggesting that alteration of regulatory motifs underlies some human-specific methylation patterns. We also found that the acquisition of DNA hypermethylation in the human lineage is frequently coupled with a rapid evolution at nucleotide level in the neighborhood of these CpG sites. Taken together, our results reveal new insights into the mechanistic basis of human-specific DNA methylation patterns and the interpretation of inter-species non-coding variation.We acknowledge support from AGAUR (Generalitat de Catlunya, Spain) and the Barcelona Zoo (Ajuntament de Barcelona) for an award to I.H.H. H.H. is a Miguel Servet (CP14/00229) researcher funded by the Spanish Institute of Health Carlos III (ISCIII).T.M.B. and M.E. are ICREA Research Professors. Funding for open access charge: European Research Council (ERC), grant EPINORC, under agreement No. 268626; MICINN Projects—SAF2011-22803 and BFU2011-28549; Cellex Foundation; European Community's Seventh Framework Programme (FP7/2007-2013), grant HEALTH-F5-2011-282510—BLUEPRINT, and the Health and Science Departments of the Generalitat de Catalunya

    A comparison of gene expression and DNA methylation patterns across tissues and species

    Get PDF
    Previously published comparative functional genomic data sets from primates using frozen tissue samples, including many data sets from our own group, were often collected and analyzed using nonoptimal study designs and analysis approaches. In addition, when samples from multiple tissues were studied in a comparative framework, individuals and tissues were confounded. We designed a multitissue comparative study of gene expression and DNA methylation in primates that minimizes confounding effects by using a balanced design with respect to species, tissues, and individuals. We also developed a comparative analysis pipeline that minimizes biases attributable to sequence divergence. Thus, we present the most comprehensive catalog of similarities and differences in gene expression and DNA methylation levels between livers, kidneys, hearts, and lungs, in humans, chimpanzees, and rhesus macaques. We estimate that overall, interspecies and inter-tissue differences in gene expression levels can only modestly be accounted for by corresponding differences in promoter DNA methylation. However, the expression pattern of genes with conserved inter-tissue expression differences can be explained by corresponding interspecies methylation changes more often. Finally, we show that genes whose tissue-specific regulatory patterns are consistent with the action of natural selection are highly connected in both gene regulatory and protein-protein interaction networks.This project was funded in part by the Office of Research Infrastructure/Office of the Director (ORIP/OD) P51OD011132 grant. T.M.-B. is supported by BFU2017-86471-P (Ministry of Economy and Competitiveness/European Regional Development Fund, European Union), NIH U01 MH106874 grant, Howard Hughes Medical Institute: International Early Career, Obra Social “La Caixa” and Secretaria d'Universitats i Recerca and Centres de Recerca de Catalunya Programme del Departament d'Economia i Coneixement de la Generalitat de Catalunya

    Dynamics of DNA methylation in recent human and great ape evolution

    No full text
    DNA methylation is an epigenetic modification involved in regulatory processes such as cell differentiation during development, X-chromosome inactivation, genomic imprinting and susceptibility to complex disease. However, the dynamics of DNA methylation changes between humans and their closest relatives are still poorly understood. We performed a comparative analysis of CpG methylation patterns between 9 humans and 23 primate samples including all species of great apes (chimpanzee, bonobo, gorilla and orangutan) using Illumina Methylation450 bead arrays. Our analysis identified 800 genes with significantly altered methylation patterns among the great apes, including 170 genes with a methylation pattern unique to human. Some of these are known to be involved in developmental and neurological features, suggesting that epigenetic changes have been frequent during recent human and primate evolution. We identified a significant positive relationship between the rate of coding variation and alterations of methylation at the promoter level, indicative of co-occurrence between evolution of protein sequence and gene regulation. In contrast, and supporting the idea that many phenotypic differences between humans and great apes are not due to amino acid differences, our analysis also identified 184 genes that are perfectly conserved at protein level between human and chimpanzee, yet show significant epigenetic differences between these two species. We conclude that epigenetic alterations are an important force during primate evolution and have been under-explored in evolutionary comparative genomics.TMB is supported by the European Research Council (ERC Starting Grant, StG_20091118) and the Spanish Government (BFU2011-28549). AJS is supported by NIH grants 1R01DA033660, 1R01HG006696, and a grant from the Alzheimer’s Association (2012ALZNIRG69983). IHH is supported by the European Social Fund, AGAUR (Generalitat de Catalunya, Spain) and the Spanish National Research Council (CSIC). We also thank the Spanish Government for the grant BFU2009-13409-C02-02 to AN and the Barcelona Zoo (Ajuntament de Barcelona) for an award to JPM. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscrip

    Great ape genetic diversity and population history

    No full text
    Most great ape genetic variation remains uncharacterized1, 2; however, its study is critical for understanding population history3, 4, 5, 6, recombination7, selection8 and susceptibility to disease9, 10. Here we sequence to high coverage a total of 79 wild- and captive-born individuals representing all six great ape species and seven subspecies and report 88.8 million single nucleotide polymorphisms. Our analysis provides support for genetically distinct populations within each species, signals of gene flow, and the split of common chimpanzees into two distinct groups: Nigeria–Cameroon/western and central/eastern populations. We find extensive inbreeding in almost all wild populations, with eastern gorillas being the most extreme. Inferred effective population sizes have varied radically over time in different lineages and this appears to have a profound effect on the genetic diversity at, or close to, genes in almost all species. We discover and assign 1,982 loss-of-function variants throughout the human and great ape lineages, determining that the rate of gene loss has not been different in the human branch compared to other internal branches in the great ape phylogeny. This comprehensive catalogue of great ape genome diversity provides a framework for understanding evolution and a resource for more effective management of wild and captive great ape populations.We thank the following funding agencies: ERC Starting Grant (260372) to T.M.-B.;NIH grants HG002385 to E.E.E., R01_HG005226 to K.R.V., A.E.W., M.F.H., L.S. and J.D.W., GM100233 and NSF HOMINID grant 1032255 to D.R. and He.Li.;MICINN(Spain)BFU2011-28549toT.M.-B.,BFU2010-19443toJa.Be.,Spanish Government and FEDER for grants BFU2009-13409-C02-02 and BFU2012-38236 to A.N. and J.P.-M., Direcció General de Recerca, Generalitat de Catalunya (Grup de Recerca Consolidat 2009 SGR 1101) to Ja.Be., D.C., A.N. and T.M.-B.; ERC Advanced Grant (233297) and Max Planck Society to S. Paabo; Danish Council for Independent Research Natural Sciences to H.S.; Spanish Grant (CGL-2010-20170) and Zoo de Barcelona (Beca PRIC) to A.R.-H.; EUPRIM-Net to BPRC; DP1ES022577-04 NIH grant to S.A.T.; NSF Grant 0755823 to M.K.G.; P.G. is supported by the G. Harold and Leila Y. Mathers Foundation. A.N. and T.M.-B. are ICREA Research Investigators (Institut Català d’Estudis i Recerca Avançats de la Generalitat de Catalunya).J.P.-M.is supported by the Zoo de Barcelona and l’Ajuntament de Barcelona. P.H.S. is supported by an HHMI International Student Fellowship. E.E.E. is an investigator with the Howard Hughes Medical Institute

    The genome sequencing of an albino Western lowland gorilla reveals inbreeding in the wild

    No full text
    BACKGROUND: The only known albino gorilla, named Snowflake, was a male wild born individual from Equatorial Guinea who lived at the Barcelona Zoo for almost 40 years. He was diagnosed with non-syndromic oculocutaneous albinism, i.e. white hair, light eyes, pink skin, photophobia and reduced visual acuity. Despite previous efforts to explain the genetic cause, this is still unknown. Here, we study the genetic cause of his albinism and making use of whole genome sequencing data we find a higher inbreeding coefficient compared to other gorillas./n/nRESULTS: We successfully identified the causal genetic variant for Snowflake's albinism, a non-synonymous single nucleotide variant located in a transmembrane region of SLC45A2. This transporter is known to be involved in oculocutaneous albinism type 4 (OCA4) in humans. We provide experimental evidence that shows that this amino acid replacement alters the membrane spanning capability of this transmembrane region. Finally, we provide a comprehensive study of genome-wide patterns of autozygogosity revealing that Snowflake's parents were related, being this the first report of inbreeding in a wild born Western lowland gorilla./n/nCONCLUSIONS: In this study we demonstrate how the use of whole genome sequencing can be extended to link genotype and phenotype in non-model organisms and it can be a powerful tool in conservation genetics (e.g., inbreeding and genetic diversity) with the expected decrease in sequencing cost.This work was supported by an ERC Starting Grant (StG_20091118) to TM-
    corecore