2,222 research outputs found

    PCV93 DISCRETE EVENT SIMULATION OF CARDIAC HOSPITALS PERFORMING PERCUTANEOUS CORONARY INTERVENTIONS

    Get PDF

    Attosecond physics at the nanoscale

    Get PDF
    Recently two emerging areas of research, attosecond and nanoscale physics, have started to come together. Attosecond physics deals with phenomena occurring when ultrashort laser pulses, with duration on the femto- and sub-femtosecond time scales, interact with atoms, molecules or solids. The laser-induced electron dynamics occurs natively on a timescale down to a few hundred or even tens of attoseconds, which is comparable with the optical field. On the other hand, the second branch involves the manipulation and engineering of mesoscopic systems, such as solids, metals and dielectrics, with nanometric precision. Although nano-engineering is a vast and well-established research field on its own, the merger with intense laser physics is relatively recent. In this article we present a comprehensive experimental and theoretical overview of physics that takes place when short and intense laser pulses interact with nanosystems, such as metallic and dielectric nanostructures. In particular we elucidate how the spatially inhomogeneous laser induced fields at a nanometer scale modify the laser-driven electron dynamics. Consequently, this has important impact on pivotal processes such as ATI and HHG. The deep understanding of the coupled dynamics between these spatially inhomogeneous fields and matter configures a promising way to new avenues of research and applications. Thanks to the maturity that attosecond physics has reached, together with the tremendous advance in material engineering and manipulation techniques, the age of atto-nano physics has begun, but it is in the initial stage. We present thus some of the open questions, challenges and prospects for experimental confirmation of theoretical predictions, as well as experiments aimed at characterizing the induced fields and the unique electron dynamics initiated by them with high temporal and spatial resolution

    Airborne measurement of peroxy radicals using chemical amplification coupled with cavity ring-down spectroscopy: the PeRCEAS instrument

    Get PDF
    Hydroperoxyl (HO2) and organic peroxy (RO2) radicals have an unpaired spin and are highly reactive free radicals. Measurements of the sum of HO2 and RO2 provide unique information about the chemical processing in an air mass. This paper describes the experimental features and capabilities of the Peroxy Radical Chemical Enhancement and Absorption Spectrometer (PeRCEAS). This is an instrument designed to make measurements on aircraft from the boundary layer to the lower stratosphere. PeRCEAS combines the amplified conversion of peroxy radicals to nitrogen dioxide (NO2) with the sensitive detection of NO2 using cavity ring-down spectroscopy (CRDS) at 408 nm. PeRCEAS is a dual-channel instrument, with two identical reactor–detector lines working out of phase with one another at a constant and defined pressure lower than ambient at the aircraft altitude. The suitability of PeRCEAS for airborne measurements in the free troposphere was evaluated by extensive characterisation and calibration under atmospherically representative conditions in the laboratory. The use of alternating modes of the two instrumental channels successfully captures short-term variations in the sum of peroxy radicals, defined as RO∗2 (RO∗2=HO2+∑RO2+OH+∑RO, with R being an organic chain) in ambient air. For a 60 s measurement, the RO∗2 detection limit is < 2 pptv for a minimum (2σ) NO2 detectable mixing ratio < 60 pptv, under laboratory conditions in the range of atmospheric pressures and temperatures expected in the free troposphere. PeRCEAS has been successfully deployed within the OMO (Oxidation Mechanism Observations) and EMeRGe (Effect of Megacities on the transport and transformation of pollutants on the Regional and Global scales) missions in different airborne campaigns aboard the High Altitude LOng range research aircraft (HALO) for the study of the composition of the free troposphere

    Results of a combined monolithic crystal and an array of ASICs controlled SiPMs

    Full text link
    [EN] In this work we present the energy and spatial resolutions we have obtained for a γ ray detector based on a monolithic LYSO crystal coupled to an array of 256 SiPMs. Two crystal configurations of the same trapezoidal shape have been tried. In one approach all surfaces were black painted but the exit one facing the photosensor array which was polished. The other approach included a retroreflector (RR) layer coupled to the entrance face of the crystal powering the amount of transmitted light to the photosensors. Two coupling media between the scintillator and the SiPM array were used, namely direct coupling by means of optical grease and coupling through an array of light guides. Since the same operational voltage was supplied to the entire array, it was needed to equalize their gains before feeding their signals to the Data Acquisition system. Such a job was performed by means of 4 scalable Application Specific Circuits (ASICs). An energy resolution of about 24.4% has been achieved for the direct coupling with the RR layer together with a spatial resolution of approximately 2.9 mm at the detector center. With the light guides coupling the effects of image compression at the edges are significantly minimized, but worsening the energy resolution to about 33.1% with a spatial resolution nearing 4 mm at the detector center. & 2013 Elsevier B.V. All rights reserved.cknowledgments This work was supported by the Centre for Industrial Technological Development co-funded by FEDER through the Technology Fund (DREAM Project, IDI-20110718), the Spanish Plan Nacional de Investigación Científica, Desarrollo e Innovación Tecnológica (IþDþI) under Grant no. FIS2010-21216-CO2-01 and the Valencian Local Government under Grant PROMETEO 2008/114Conde Castellanos, PE.; González Martínez, AJ.; Hernández Hernández, L.; Bellido, P.; Iborra Carreres, A.; Crespo Navarro, E.; Moliner Martínez, L.... (2014). Results of a combined monolithic crystal and an array of ASICs controlled SiPMs. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment. 734:132-136. https://doi.org/10.1016/j.nima.2013.08.079S13213673

    Set optimization - a rather short introduction

    Full text link
    Recent developments in set optimization are surveyed and extended including various set relations as well as fundamental constructions of a convex analysis for set- and vector-valued functions, and duality for set optimization problems. Extensive sections with bibliographical comments summarize the state of the art. Applications to vector optimization and financial risk measures are discussed along with algorithmic approaches to set optimization problems

    Innovative Crop Productions for Healthy Food: The Case of Chia (Salvia hispanica L.)

    Get PDF
    Chia (Salvia hispanica L.) is an ancient crop from Central America which has been recently rediscovered as a source of ω-3 and nutraceuticals in seeds. Besides traditional seed consumption, innovative uses of the plant seeds and leaves have been proposed based on the high protein content and the production of mucilage which lends itself to a range of applications. This chapter reviews research on the plant’s genetics and breeding, quality, and uses. Agronomic studies which have only recently started worldwide are also presented along with results from case studies in Basilicata

    Detection of Usutu virus infection in wild birds in the United Kingdom, 2020

    Get PDF
    In August 2020, as part of a long-term disease surveillance programme, Usutu virus was detected in five Eurasian blackbirds (Turdus merula) and one house sparrow (Passer domesticus) from Greater London, England. This was initially detected by reverse transcription-PCR and was confirmed by virus isolation and by immunohistochemical detection of flavivirus in tissues. Phylogenetic analysis identified Usutu virus African 3.2 lineage, which is prevalent in the Netherlands and Belgium, suggesting a potential incursion from mainland Europe

    Filamin C variants are associated with a distinctive clinical and immunohistochemical arrhythmogenic cardiomyopathy phenotype.

    Get PDF
    BACKGROUND: Pathogenic variants in the filamin C (FLNC) gene are associated with inherited cardiomyopathies including dilated cardiomyopathy with an arrhythmogenic phenotype. We evaluated FLNC variants in arrhythmogenic cardiomyopathy (ACM) and investigated the disease mechanism at a molecular level. METHODS: 120 gene-elusive ACM patients who fulfilled diagnostic criteria for arrhythmogenic right ventricular cardiomyopathy (ARVC) were screened by whole exome sequencing. Fixed cardiac tissue from FLNC variant carriers who had died suddenly was investigated by histology and immunohistochemistry. RESULTS: Novel or rare FLNC variants, four null and five variants of unknown significance, were identified in nine ACM probands (7.5%). In FLNC null variant carriers (including family members, n = 16) Task Force diagnostic electrocardiogram repolarization/depolarization abnormalities were uncommon (19%), echocardiography was normal in 69%, while 56% had >500 ventricular ectopics/24 h or ventricular tachycardia on Holter and 67% had late gadolinium enhancement (LGE) on cardiac magnetic resonance imaging (CMRI). Ten gene positive individuals (63%) had abnormalities on ECG or CMRI that are not included in the current diagnostic criteria for ARVC. Immunohistochemistry showed altered key protein distribution, distinctive from that observed in ARVC, predominantly in the left ventricle. CONCLUSIONS: ACM associated with FLNC variants presents with a distinctive phenotype characterized by Holter arrhythmia and LGE on CMRI with unremarkable ECG and echocardiographic findings. Clinical presentation in asymptomatic mutation carriers at risk of sudden death may include abnormalities which are currently non-diagnostic for ARVC. At the molecular level, the pathogenic mechanism related to FLNC appears different to classic forms of ARVC caused by desmosomal mutations
    corecore