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In August 2020, as part of a long-term disease sur-
veillance programme, Usutu virus was detected in five 
Eurasian blackbirds (Turdus merula) and one house 
sparrow (Passer domesticus) from Greater London, 
England. This was initially detected by reverse tran-
scription-PCR and was confirmed by virus isolation 
and by immunohistochemical detection of flavivirus 
in tissues. Phylogenetic analysis identified Usutu 
virus African 3.2 lineage, which is prevalent in the 
Netherlands and Belgium, suggesting a potential 
incursion from mainland Europe.

In recent years, the zoonotic viruses, West Nile virus 
(WNV) and Usutu virus (USUV) have spread extensively 
throughout mainland Europe. Emergence is understood 
to be facilitated by the movement of wild birds, the 
vertebrate reservoir, and mosquitoes, the arthropod 
vector. This presents a risk of virus introduction to the 
United Kingdom (UK). As a result, dead wild birds in 
the UK are tested for both viruses during the vector-
active season.

During the late summer of 2020, USUV RNA was 
detected in six passerine birds found in Greater London. 
Here we confirm the details of the initial detection and 
molecular characterisation of the virus.

Wild bird Flavivirus surveillance in the 
United Kingdom
Usutu virus (family:  Flaviviridae, genus:  Flavivirus) is 
a single-stranded RNA virus that is maintained in a 
natural enzootic cycle between mosquitoes, which act 
as vectors, and birds, which are the main amplifying 
hosts [1]. Epizootics involving large-scale bird die-
offs have occurred across mainland Europe, including 
Belgium and the Netherlands [2,3], but with no evi-
dence of emergence in the United Kingdom (UK). As 

part of a long-term disease surveillance programme 
in Great Britain (2005 until present), coordinated by 
the Institute of Zoology (https://www.gardenwildlife-
health.org) and the Animal and Plant Health Agency, 
morbidity and mortality in wild birds is recorded and 
carcasses are submitted for post-mortem examina-
tion (PME). Targeted surveillance for WNV and USUV is 
conducted on samples collected from these wild birds 
during the active mosquito season, April to November 
inclusive [4]. Since 2005, samples from more than 
2,550 wild birds have been submitted for molecular 
testing, of which 643 have been screened specifically 
for USUV.

Outbreak identification and confirmation
Between 15 July and 26 August 2020, five Eurasian 
blackbirds (Turdus merula) and one house sparrow 
(Passer domesticus) were submitted from a single area 
in Greater London. PMEs were conducted according 
to a standardised protocol [5]. The blackbirds com-
prised three adult males in thin or emaciated condi-
tion, based on assessment of muscle condition and 
body fat reserves, and two juveniles of undetermined 
sex in normal body condition. Clinical signs had been 
observed in two of the blackbirds: one was dehydrated 
and unable to grip, and was therefore euthanised on 
welfare grounds; the second was found unresponsive 
and subsequently died. The house sparrow was an 
adult male in thin body condition that was found dead.

Following PME, total RNA was extracted from brain and 
kidney samples to screen for USUV, WNV and Sindbis 
virus (SINV). Neither WNV nor SINV RNA was detected in 
any of the samples, however, USUV RNA was detected 
in all samples using a specific reverse transcription 
PCR (RT-PCR) assay [6] (cycle threshold (Ct) range: 
21.94–30.90). Detection of USUV RNA was confirmed 
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using a pan-flavivirus RT-PCR [7] that provided suf-
ficient amplicon (165 bp) for Sanger sequencing. All 
sequences showed 100% similarity to USUV African 3.2 
lineage (GenBank accession number: MN122254), iso-
lated from a blackbird in the Netherlands [2]. We also 
sequenced the cytochrome oxidase 1 gene to confirm 
host species identity of tissue samples (Supplementary 
material). In addition, we have isolated USUV from 
RT-PCR-positive brain and kidney tissues from all six 
birds using Vero cells. This has been confirmed by vis-
ualisation of cytopathic effect and RT-PCR [6].

Flavivirus envelope (E) antigen was detected by immu-
nohistochemistry on formalin-fixed paraffin-embed-
ded tissue sections from all six birds. Tissue sections 
were quenched for endogenous peroxidase activity, 
virus antigens retrieved with proteinase enzyme buffer 
(DAKO, Glostrup, Denmark), followed by immunola-
belling with mouse monoclonal antibody against fla-
vivirus E antigen (ab155882, Abcam, Cambridge, UK; 
2 µg/mL) or a concentration-matched mouse IgG class 
2a isotype control (ab18415, Abcam, Cambridge, UK). 
Tissue sections were then incubated with DAKO mouse 
EnVision + System and horseradish peroxidase (DAKO, 
Glostrup, Denmark), visualised using 3,3-diaminoben-
zidine (Sigma Aldrich, Missouri, United States (US)) 
and counterstained in Mayer’s haematoxylin (Leica, 
Illinois, US). We used Vero cells infected with Japanese 
encephalitis virus or WNV as positive controls for flavi-
virus immunolabelling. Usutu RNA negative birds were 
used as negative controls (Supplementary material).

Brain and kidney samples were used to confirm pres-
ence of virus antigen to corroborate the RT-PCR results. 
Light microscopy examination of the brain and kidney 
sections of each of the blackbirds and house sparrow 

revealed positive immunolabelling for flavivirus E anti-
gens. In the brains of five birds (brain not available for 
histology from one blackbird), virus antigens were pre-
sent in the neurons (Figure 1a and, c). In the kidneys of 
all six birds, presence of virus antigens in renal tubules 
were associated with mild to moderate multifocal lym-
phoplasmacytic tubulointerstitial nephritis (Figure 1b 
and d). In addition, capillaries in the brain and kidney 
from both passerine species were immunopositive for 
flavivirus antigens (Figure 1).

Sequence analysis
Extracted RNA samples were submitted for next gener-
ation sequencing (NGS). A Nextera XT DNA library prep-
aration kit (2 × 150 bp reads, Illumina, San Diego, US) 
was used for library preparation. Sequencing was car-
ried out on an Illumina MiSeq sequencer. We performed 
a de novo assembly using SPAdes v3.14.1 on one black-
bird sample (based on Ct value, see  Supplementary 
material) and used the resulting contig list as a seed 
for a BLAST search. One contig (10,922 bp) aligned to 
an USUV African 3.2 isolate (GenBank accession num-
ber: MN122254; 99.80% identity). We used the de novo 
contig to align reads from all six RNA extractions using 
a combination of Burrows-Wheeler Aligner v0.7.13 and 
SAMtools v1.9. Read alignment and genome coverage 
for all sequences was inspected in Tablet v1.19.09.03 
(Supplementary material). Following consensus con-
struction, the de novo assembled Greater London 2020 
sequence (GenBank accession number: MW001216) 
was aligned against 17 USUV GenBank sequences 
(Supplementary material) in Mafft v7.471. The align-
ment was imported into BEAST v1.10.4 and used to con-
struct a Bayesian phylogenetic tree using the GTR + I + G 
nucleotide substitution model and 10,000,000 Markov 
chain Monte Carlo generations (Figure 2). Log files 
were analysed in Tracer v1.7.1 to check effective sample 
size and a 10% burn-in was included (TreeAnnotator 
v1.10.4), before tree visualisation and annotation in 
FigTree v1.4.4. The Greater London 2020 sequence 
formed a distinct, well supported clade with African 
3.2 lineages of USUV. The NGS reads failed to align to 
a European WNV genome (GenBank accession number: 
MH924836). 

Discussion
Here we present data to support the emergence of 
USUV in wild birds in the UK in 2020. Our results show 
that an African 3.2 lineage of USUV has infected two 
species of wild birds in Greater London. Given that 
mortality occurred over a 5-week period, it is likely 
that autochthonous transmission of USUV in local pas-
serine populations has occurred, probably vectored 
by indigenous mosquitoes [1]. While there have been 
previous reports of USUV neutralising antibodies from 
birds in the UK, the authors did not report detecting 
virus using either virus isolation or molecular meth-
ods [8,9]. In addition, targeted wild bird disease sur-
veillance for USUV since 2005 has not detected earlier 
virus incursions [4]. However, it is important to note 
that our detection is unlikely to represent the incursion 

Figure 1
Detection of flavivirus envelope antigen in blackbird 
(Turdus merula) and house sparrow (Passer domesticus) 
using immunohistochemistry on formalin-fixed paraffin-
embedded tissue sections, United Kingdom, 2020

Solid arrow: neurons; non-solid arrow: endothelial cells; solid 
arrow head: renal tubular epithelial cells. Images taken at 400× 
magnification.
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event, which may have occurred at an earlier date and 
at another location where emergence may have been 
facilitated by migratory birds or transported mosqui-
toes [2]. The average temperature in the late spring 
and early summer of 2020 in the UK was 1–2 °C higher 
than average [10], which may have been permissive 
for USUV replication and subsequent transmission by 
mosquito vectors, allowing its establishment in native 
wild bird populations. Mosquito surveillance, in collab-
oration with Public Health England, is being conducted 
in the location where the infected birds were found, to 
ascertain whether USUV is circulating in local vectors. 
On 30 September 2020, mosquitoes were active at the 
index site and therefore, if climatic conditions are per-
missible, transmission of USUV to wild birds may be 
ongoing.

The USUV Africa 3.2 lineage is widespread in main-
land Europe and presents a likely source population 
for the identified UK outbreak [2]. Originally isolated in 
South Africa in 1959, USUV has since emerged across 
mainland Europe, following a similar pattern to the 
closely related WNV [11]. There are 10 recognised USUV 
lineages co-circulating in Europe, and this is likely to 
be a result of independent introduction events [12]. 

Consequently, other lineages of USUV may emerge in 
the UK.

Turdus merula  and  P. domesticus  are susceptible to 
USUV and can develop systemic infections which our 
findings corroborate [13-17]. Indeed, infection with 
USUV has caused morbidity and mortality across 
Europe in passerines, especially T. merula, sometimes 
on a scale sufficient to cause population declines [18]. 
Although infection in humans is rare, USUV is a zoono-
sis that is predominantly asymptomatic but can result 
in neurological disease [19,20]. In addition, the virus 
can also be transmitted by blood transfusion, high-
lighting the importance for USUV screening of blood 
products as a preventative control measure [21,22]. 
In light of our findings, the UK government’s Human 
Animal Infections and Risk Surveillance group (HAIRS) 
has revised and increased its public health risk assess-
ment for USUV, to a low probability of transmission 
and a low to moderate impact [23]. In addition, the 
HAIRS report recommends that the Standing Advisory 
Committee on Transfusion Transmitted Infections, the 
Advisory Committee on Dangerous Pathogens, and the 
UK Zoonosis Network are to be advised of the revised 
public health risk within the UK [23]. The detection of 
USUV in the UK has implications for both animal and 

Figure 2
Bayesian phylogenetic tree of a de novo assembled USUV lineage from an infected blackbird (Turdus merula), United 
Kingdom, 2020
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The tree is based on 10,922bp of coding sequence from the USUV genome. The Greater London 2020 sequence (highlighted in red) forms 
a distinct clade with Africa 3.2 lineages previously detected in the Netherlands (highlighted in green). Node labels represent posterior 
probabilities and scale bar represents substitutions per site. Accession number, country, year of detection and host species are included for 
each sequence.
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public health and future outbreaks in wild birds may 
occur and should be monitored.
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