76 research outputs found

    Oncostatin M-induced and constitutive activation of the JAK2/STAT5/CIS pathway suppresses CCL1, but not CCL7 and CCL8, chemokine expression

    Get PDF
    The recruitment of leukocytes to injured tissue is crucial for the initiation of inflammatory responses as well as for immune surveillance to fight tumor progression. In this study, we show that oncostatin M, a member of the IL-6-type cytokine family and potent proinflammatory cytokine stimulates the expression of the chemokines CCL1, CCL7, and CCL8 in primary human dermal fibroblasts at a faster kinetic than IL-1beta or TNF-alpha. The production of CCL1 and CCL8 is important for migration of monocytes, while specific Abs against CCL1 additionally inhibit the migration of T lymphocytes. We identify the mitogen-activated protein kinases ERK1/2 and p38 as crucial factors for the enhanced expression of CCL1 and CCL8. Depletion of the ERK1/2 target genes c-Jun or c-Fos strongly decrease CCL1 and CCL8 expression, while p38 MAPK prolongs the half-life of CCL1, CCL7, and CCL8 mRNA through inhibition of tristetraprolin. None of the STAT transcription factors STAT1, STAT3, or STAT5 stimulate transcription of CCL1 or CCL8. However, we identify a negative regulatory function of activated STAT5 for the gene expression of CCL1. Importantly, not STAT5 itself, but its target gene cytokine inducible SH2-domain containing protein is required for the STAT5 inhibitory effect on CCL1 expression. Finally, we show that constitutive activation of STAT5 through a mutated form of JAK2 (JAK2 V617F) occurring in patients with myeloproliferative disorders similarly suppresses CCL1 expression. Taken together, we identify novel important inflammatory target genes of OSM which are independent of STAT signaling per se, but depend on MAPK activation and are partly repressed through STAT5-dependent expression of cytokine inducible SH2-domain containing protein

    Loss of zinc transporters ZIP1 and ZIP3 augments platelet reactivity in response to thrombin and accelerates thrombus formation in vivo

    Get PDF
    Zinc (Zn2+) is considered as important mediator of immune cell function, thrombosis and haemostasis. However, our understanding of the transport mechanisms that regulate Zn2+ homeostasis in platelets is limited. Zn2+ transporters, ZIPs and ZnTs, are widely expressed in eukaryotic cells. Using mice globally lacking ZIP1 and ZIP3 (ZIP1/3 DKO), our aim was to explore the potential role of these Zn2+ transporters in maintaining platelet Zn2+ homeostasis and in the regulation of platelet function. While ICP-MS measurements indicated unaltered overall Zn2+ concentrations in platelets of ZIP1/3 DKO mice, we observed a significantly increased content of FluoZin3-stainable free Zn2+, which, however, appears to be released less efficiently upon thrombin-stimulated platelet activation. On the functional level, ZIP1/3 DKO platelets exhibited a hyperactive response towards threshold concentrations of G protein-coupled receptor (GPCR) agonists, while immunoreceptor tyrosine-based activation motif (ITAM)-coupled receptor agonist signalling was unaffected. This resulted in enhanced platelet aggregation towards thrombin, bigger thrombus volume under flow ex vivo and faster in vivo thrombus formation in ZIP1/3 DKO mice. Molecularly, augmented GPCR responses were accompanied by enhanced Ca2+ and PKC, CamKII and ERK1/2 signalling. The current study thereby identifies ZIP1 and ZIP3 as important regulators for the maintenance of platelet Zn2+ homeostasis and function

    TRPM7 Kinase Controls Calcium Responses in Arterial Thrombosis and Stroke in Mice

    Get PDF
    Objective: TRPM7 (transient receptor potential cation channel, subfamily M, member 7) is a ubiquitously expressed bifunctional protein comprising a transient receptor potential channel segment linked to a cytosolic alpha-type serine/threonine protein kinase domain. TRPM7 forms a constitutively active Mg2+ and Ca2+ permeable channel, which regulates diverse cellular processes in both healthy and diseased conditions, but the physiological role of TRPM7 kinase remains largely unknown. Approach and Results: Here we show that point mutation in TRPM7 kinase domain deleting the kinase activity in mice (Trpm7(R/R)) causes a marked signaling defect in platelets. Trpm7(R/R) platelets showed an impaired PIP2 (phosphatidylinositol-4,5-bisphosphate) metabolism and consequently reduced Ca2+ mobilization in response to stimulation of the major platelet receptors GPVI (glycoprotein VI), CLEC-2 (C-type lectin-like receptor), and PAR (protease-activated receptor). Altered phosphorylation of Syk (spleen tyrosine kinase) and phospholipase C gamma 2 and beta 3 accounted for these global platelet activation defects. In addition, direct activation of STIM1 (stromal interaction molecule 1) with thapsigargin revealed a defective store-operated Ca2+ entry mechanism in the mutant platelets. These defects translated into an impaired platelet aggregate formation under flow and protection of the mice from arterial thrombosis and ischemic stroke in vivo. Conclusions: Our results identify TRPM7 kinase as a key modulator of phospholipase C signaling and store-operated Ca2+ entry in platelets. The protection of Trpm7(R/R) mice from acute ischemic disease without developing intracranial hemorrhage indicates that TRPM7 kinase might be a promising antithrombotic target

    The PD-L1- and IL6-mediated dampening of the IL27/STAT1 anticancer responses are prevented by a-PD-L1 or a-IL6 antibodies

    Get PDF
    Interleukin-27 (IL27) is a type-I cytokine of the IL6/IL12 family and is predominantly secreted by activated macrophages and dendritic cells.We show that IL27 induces STAT factor phosphorylation in cancerous cell lines of different tissue origin. IL27 leads to STAT1 phosphorylation and recapitulates an IFN- -like response in the microarray analyses, with up-regulation of genes involved in antiviral defense, antigen presentation, and immune suppression. Like IFN- , IL27 leads to an up-regulation of TAP2 and MHC-I proteins, which mediate increased tumor immune clearance. However, both cytokines also upregulate proteins such as PD-L1 (CD274) and IDO-1, which are associatedwith immune escape of cancer. Interestingly, differential expression of these geneswas observed within the different cell lines and when comparing IL27 to IFN- . In coculture experiments of hepatocellular carcinoma (HCC) cells with peripheral blood mononuclear cells, pre-treatment of the HCC cells with IL27 resulted in lowered IL2 production by anti-CD3/-CD28 activated T-lymphocytes. Addition of anti-PD-L1 antibody, however, restored IL2 secretion. The levels of other TH1 cytokines were also enhanced or restored upon administration of anti-PD-L1. In addition, we show that the suppression of IL27 signaling by IL6-type cytokine prestimulation— mimicking a situation occurring, for example, in IL6-secreting tumors or in tumor inflammation–induced cachexia—can be antagonized by antibodies against IL6-type cytokines or their receptors. Therapeutically, the antitumor effects of IL27 (mediated, e.g., by increased antigen presentation) might thus be increased by combining IL27with blocking antibodies against PD-L1 or/and IL6-type cytokines

    Совершенствование системы вознаграждения персонала бюджетного учреждения на основе комплексной оценки его деятельности

    Get PDF
    Объектом исследования является МБОУ 슫СОШ № 18슻 Цель работы - является оценка системы вознаграждения труда персонала бюджетного учреждения, ее оптимизации на основе комплексной оценке его деятельности В процессе исследования проводились способы группировки и сравнения, графические и аналитические методы. В результате исследования были выявлены недостатки и предложен комплекс мер по их устранению. Степень внедрения: сделать систему оплаты труда взаимосвязанной с конкретным результатом каждого работника и учреждения в целом. Область применения: бюджетные учреждения. Экономическая эффективность работы заключается в объективной оценке оплаты труда в бюджетном учреждении и в разработке практических рекомендаций по совершенствованию системы оплаты труда в анализируемом учреждении.The object of study is MBOU "SOSH № 18" Purpose - is to assess the remuneration system of the personnel budget of the institution, its optimization on the basis of a comprehensive assessment of its activities In the process of investigation the methods of grouping and comparison of graphical and analytical methods. The study revealed shortcomings and proposed the complex of measures on their elimination. Level of implementation: to make the wage system is interconnected with the concrete result of each employee and the institution as a whole. Scope: budget companies. Economic efficiency is an objective assessment of remuneration in budgetary institutions and in the development of practical recommendations for improving the system of remuneration in the analyzed institution

    Crosstalk between different family members: IL27 recapitulates IFNγ responses in HCC cells, but is inhibited by IL6-type cytokines

    Get PDF
    Interleukin-27 (IL27) is a type-I-cytokine of the IL6/IL12 family predominantly secreted by activated macrophages and dendritic cells. In the liver, IL27 expression was observed to be upregulated in patients with hepatitis B, and sera of hepatocellular carcinoma (HCC) patients contain significantly elevated levels of IL27 compared to healthy controls or patients with hepatitis and/or liver cirrhosis. In this study, we show that IL27 induces STAT1 and STAT3 phosphorylation in 5 HCC lines and 3 different types of non-transformed liver cells. We were especially interested in the relevance of the IL27-induced STAT3 activation in liver cells. Thus, we compared the IL27 responses with those induced by IFNγ (STAT1-dominated response) or IL6-type cytokines (IL6, hyper-IL6 (hy-IL6) or OSM) (STAT3-dominated response) by microarray analysis and find that in HCC cells, IL27 induces an IFNγ-like, STAT1-dependent transcriptional response, but we do not find an effective STAT3-dependent response. Validation experiments corroborate the finding from the microarray evaluation. Interestingly, the availability of STAT1 seems critical in the shaping of the IL27 response, as the siRNA knock-down of STAT1 revealed the ability of IL27 to induce the acute-phase protein γ-fibrinogen, a typical IL6 family characteristic. Moreover, we describe a crosstalk between the signaling of IL6-type cytokines and IL27: responses to the gp130-engaging cytokine IL27 (but not those to IFNs) can be inhibited by IL6-type cytokine pre-stimulation, likely by a SOCS3-mediated mechanism. Thus, IL27 recapitulates IFNγ responses in liver cells, but differs from IFNγ by its sensitivity to SOCS3 inhibition

    Characterization of the Rat Oncostatin M Receptor Complex Which Resembles the Human, but Differs from the Murine Cytokine Receptor

    Get PDF
    Evaluation of a pathophysiological role of the interleukin-6-type cytokine oncostatin M (OSM) for human diseases has been complicated by the fact that mouse models of diseases targeting either OSM or the OSM receptor (OSMR) complex cannot fully reflect the human situation. This is due to earlier findings that human OSM utilizes two receptor complexes, glycoprotein 130 (gp130)/leukemia inhibitory factor receptor (LIFR) (type I) and gp130/OSMR (type II), both with wide expression profiles. Murine OSM on the other hand only binds to the gp130/OSMR (type II) receptor complex with high affinity. Here, we characterize the receptor usage for rat OSM. Using different experimental approaches (knock-down of the OSMR expression by RNA interference, blocking of the LIFR by LIF-05, an antagonistic LIF variant and stably transfected Ba/F3 cells) we can clearly show that rat OSM surprisingly utilizes both, the type I and type II receptor complex, therefore mimicking the human situation. Furthermore, it displays cross-species activities and stimulates cells of human as well as murine origin. Its signaling capacities closely mimic those of human OSM in cell types of different origin in the way that strong activation of the Jak/STAT, the MAP kinase as well as the PI3K/Akt pathways can be observed. Therefore, rat disease models would allow evaluation of the relevance of OSM for human biology

    Defining the functional binding sites of interleukin 12 receptor beta 1 and interleukin 23 receptor to Janus kinases

    Get PDF
    The interleukin (IL)-12-type cytokines IL-12 and IL-23 are involved in T-helper (Th) 1 and Th17 immunity, respectively. They share the IL-12 receptor beta 1 (IL-12R beta 1) as one component of their receptor signaling complexes, with IL-12R beta 2 as second receptor for IL-12 and IL-23R for IL-23 signal transduction. Stimulation with IL-12 and IL-23 results in activation of receptor-associated Janus kinases (Jak) and phosphorylation of STAT proteins in target cells. The Janus kinase tyrosine kinase (Tyk) 2 associates with IL-12R beta 1, whereas Jak2 binds to IL-23R and also to IL-12R beta 2. Receptor association of Jak2 is mediated by Box1 and Box2 motifs located within the intracellular domain of the receptor chains. Here we define the Box1 and Box2 motifs in IL-12R beta 1 and an unusual Jak2-binding site in IL-23R by the use of deletion and site-directed mutagenesis. Our data show that nonfunctional box motifs abolish IL-12- and IL-23-induced STAT3 phosphorylation and cytokine-dependent proliferation of Ba/F3 cells. Coimmunoprecipitation of Tyk2 by IL-12R beta 1 and Jak2 by IL-23R supported these findings. In addition, our data demonstrate that association of Jak2 with IL-23R is mandatory for IL-12 and/or IL-23 signaling, whereas Tyk2 seems to be dispensable

    Complement 1q/Tumor Necrosis Factor-Related Proteins (CTRPs): Structure, Receptors and Signaling

    No full text
    Adiponectin and the other 15 members of the complement 1q (C1q)/tumor necrosis factor (TNF)-related protein (CTRP) family are secreted proteins composed of an N-terminal variable domain followed by a stalk region and a characteristic C-terminal trimerizing globular C1q (gC1q) domain originally identified in the subunits of the complement protein C1q. We performed a basic PubMed literature search for articles mentioning the various CTRPs or their receptors in the abstract or title. In this narrative review, we briefly summarize the biology of CTRPs and focus then on the structure, receptors and major signaling pathways of CTRPs. Analyses of CTRP knockout mice and CTRP transgenic mice gave overwhelming evidence for the relevance of the anti-inflammatory and insulin-sensitizing effects of CTRPs in autoimmune diseases, obesity, atherosclerosis and cardiac dysfunction. CTRPs form homo- and heterotypic trimers and oligomers which can have different activities. The receptors of some CTRPs are unknown and some receptors are redundantly targeted by several CTRPs. The way in which CTRPs activate their receptors to trigger downstream signaling pathways is largely unknown. CTRPs and their receptors are considered as promising therapeutic targets but their translational usage is still hampered by the limited knowledge of CTRP redundancy and CTRP signal transduction
    corecore