22 research outputs found

    The cellular microscopy phenotype ontology

    Get PDF
    BACKGROUND: Phenotypic data derived from high content screening is currently annotated using free-text, thus preventing the integration of independent datasets, including those generated in different biological domains, such as cell lines, mouse and human tissues. DESCRIPTION: We present the Cellular Microscopy Phenotype Ontology (CMPO), a species neutral ontology for describing phenotypic observations relating to the whole cell, cellular components, cellular processes and cell populations. CMPO is compatible with related ontology efforts, allowing for future cross-species integration of phenotypic data. CMPO was developed following a curator-driven approach where phenotype data were annotated by expert biologists following the Entity-Quality (EQ) pattern. These EQs were subsequently transformed into new CMPO terms following an established post composition process. CONCLUSION: CMPO is currently being utilized to annotate phenotypes associated with high content screening datasets stored in several image repositories including the Image Data Repository (IDR), MitoSys project database and the Cellular Phenotype Database to facilitate data browsing and discoverability

    TreeFam: 2008 Update

    Get PDF
    TreeFam (http://www.treefam.org) was developed to provide curated phylogenetic trees for all animal gene families, as well as orthologue and paralogue assignments. Release 4.0 of TreeFam contains curated trees for 1314 families and automatically generated trees for another 14 351 families. We have expanded TreeFam to include 25 fully sequenced animal genomes, as well as four genomes from plant and fungal outgroup species. We have also introduced more accurate approaches for automatically grouping genes into families, for building phylogenetic trees, and for inferring orthologues and paralogues. The user interface for viewing phylogenetic trees and family information has been improved. Furthermore, a new perl API lets users easily extract data from the TreeFam mysql database

    Induction of Olig2+ Precursors by FGF Involves BMP Signalling Blockade at the Smad Level

    Get PDF
    During normal development oligodendrocyte precursors (OPCs) are generated in the ventral spinal cord in response to Sonic hedgehog (Shh) signalling. There is also a second, late wave of oligodendrogenesis in the dorsal spinal cord independent of Shh activity. Two signalling pathways, controlled by bone morphogenetic protein and fibroblast growth factor (FGF), are active players in dorsal spinal cord specification. In particular, BMP signalling from the roof plate has a crucial role in setting up dorsal neural identity and its inhibition is sufficient to generate OPCs both in vitro and in vivo. In contrast, FGF signalling can induce OPC production from dorsal spinal cord cultures in vitro. In this study, we examined the cross-talk between mitogen-activated protein kinase (MAPK) and BMP signalling in embryonic dorsal spinal cord cultures at the SMAD1/5/8 (SMAD1) transcription factor level, the main effectors of BMP activity. We have previously shown that FGF2 treatment of neural precursor cells (NPCs) derived from rat E14 dorsal spinal cord is sufficient to generate OPCs in vitro. Utilising the same system, we now show that FGF prevents BMP-induced nuclear localisation of SMAD1-phosphorylated at the C-terminus (C-term-pSMAD1). This nuclear exclusion of C-term-pSMAD1 is dependent on MAPK activity and correlates with OLIG2 upregulation, the obligate transcription factor for oligodendrogenesis. Furthermore, inhibition of the MAPK pathway abolishes OLIG2 expression. We also show that SMAD4, which acts as a common partner for receptor-regulated Smads including SMAD1, associates with a Smad binding site in the Olig2 promoter and dissociates from it upon differentiation. Taken together, these results suggest that FGF can promote OPC generation from embryonic NPCs by counteracting BMP signalling at the Smad1 transcription factor level and that Smad-containing transcriptional complexes may be involved in direct regulation of the Olig2 promoter

    Finding and sharing: new approaches to registries of databases and services for the biomedical sciences.

    No full text
    The recent explosion of biological data and the concomitant proliferation of distributed databases make it challenging for biologists and bioinformaticians to discover the best data resources for their needs, and the most efficient way to access and use them. Despite a rapid acceleration in uptake of syntactic and semantic standards for interoperability, it is still difficult for users to find which databases support the standards and interfaces that they need. To solve these problems, several groups are developing registries of databases that capture key metadata describing the biological scope, utility, accessibility, ease-of-use and existence of web services allowing interoperability between resources. Here, we describe some of these initiatives including a novel formalism, the Database Description Framework, for describing database operations and functionality and encouraging good database practise. We expect such approaches will result in improved discovery, uptake and utilization of data resources. Database URL: http://www.casimir.org.uk/casimir_ddf
    corecore