5 research outputs found

    On the use of infrasound for evaluating long range middle atmospheric variability: application for early notification of Volcanic Ash Advisory Centres

    No full text
    Global scale infrasound observations confirm that the detection capability of the International Monitoring System (IMS) deployed to monitor compliance with the Comprehensive Nuclear-Test ban Treaty (CTBT) is highly variable in space and time. Existing empirical yield-scaling relations simplified the complexities of infrasound propagation as the stratospheric wind correction applied does not account for an accurate description of the middle atmosphere along the propagation path. In order to reduce the variance in the calculated transmission loss, massive frequency and range-dependent full-wave propagation simulations are carried out. A wide range of realistic atmospheric scenarios are explored including fine-scale atmospheric structures derived from a two-dimensional horizontal wave number spectrum model. In the context of the future verification of the CTBT, this approach helps advance the development of network performance simulations in higher resolution and the evaluation of middle atmospheric models at a global scale with limited computational resources. It also offers avenues for civilian applications such as the use of infrasound data in support of the International Civil Aviation Organization (ICAO) International Airways Volcano Watch. Continuous progress has been made in recent years initiated by a collaboration between CTBTO and the Toulouse Volcanic Ash Advisory Centre (VAAC), resulting in the development of the Volcanic Information System (VIS) under the ARISE (Atmospheric dynamics Research Infra-Structure in Europe) project. Examples of notifications of recent volcanic activity based on global infrasound observations will be presented

    Operational Response to Volcanic Ash Risks Using HOTVOLC Satellite-Based System and MOCAGE-Accident Model at the Toulouse VAAC

    No full text
    In 2010, the Eyjafjallajökull volcano erupted, generating an ash cloud causing unprecedented disruption of European airspace. Despite an exceptional situation, both the London and Toulouse Volcanic Ash Advisory Centres (VAAC) provided critical information on the location of the cloud and on the concentration of ash, thus contributing to the crisis management. Since then, substantial efforts have been carried out by the scientific community in order to improve remote sensing techniques and numerical modeling. Satellite instruments have proven to be particularly relevant for the characterization of ash cloud properties and a great help in the operational management of volcanic risk. In this study, we present the satellite-based system HOTVOLC developed at the Observatoire de Physique du Globe de Clermont-Ferrand (OPGC) using Meteosat geostationary satellite and designed for real-time monitoring of active volcanoes. After a brief presentation of the system we provide details on newly developed satellite products dedicated to the ash cloud characterization. This includes, in particular, ash cloud altitude and vertical column densities (VCD). Then, from the Stromboli 2018 paroxysm, we show how HOTVOLC can be used in a timely manner to assist the Toulouse VAAC in the operational management of the eruptive crisis. In the second part of the study, we provide parametric tests of the MOCAGE-Accident model run by the Toulouse VAAC from the April 17 Eyjafjallajökull eruption. For this purpose, we tested a range of eruption source parameters including the Total Grain Size Distribution (TGSD), the eruptive column profile, the top plume height and mass eruption rate (MER), as well as the fine ash partitioning. Finally, we make a comparison on this case study between HOTVOLC and MOCAGE-Accident VCD

    L'éruption du volcan Hunga Tonga -Hunga Ha'apai le 15 janvier 2022 : un ébranlement du systÚme Terre à l'échelle planétaire

    No full text
    L'Ă©ruption explosive du volcan Hunga Tonga - Hunga Ha’apai (HTHH), le 15 janvier 2022, a produit la plus puissante explosion enregistrĂ©e depuis les explosions du Krakatau et du Tambora dans les annĂ©es 1800, libĂ©rant une Ă©nergie Ă©quivalente Ă  110 mĂ©gatonnes de TNT. Les ondes gĂ©nĂ©rĂ©es sesont propagĂ©es dans le sol, et dans l’atmosphĂšre jusqu’à l’ionosphĂšre. L'onde atmosphĂ©rique la plus Ă©nergĂ©tique observĂ©e sur les baromĂštres correspond au mode de Lamb. De pĂ©riode supĂ©rieure Ă  2000 s, son amplitude est comparable Ă  celle observĂ©e lors de l’éruption du Krakatau en 1883. L’empreinte des perturbations atmosphĂ©riques a Ă©tĂ© caractĂ©risĂ©e Ă  l’échelle planĂ©taire par des rĂ©seaux de mesures au sol, Ă  bord de satellites ou de plateformes aĂ©roportĂ©es. L’analyse combinĂ©e de ces observations a permis d’évaluer les consĂ©quences Ă  court terme de l'Ă©ruption du HTHH. Les mĂ©thodes d'investigation gĂ©ophysiques prĂ©sentĂ©es dans cette note montrent l’apport d’analyses interdisciplinaires pour caractĂ©riser la rĂ©ponse impulsionnelle des enveloppes fluides planĂ©taires (atmosphĂšre, ocĂ©ans et mers) Ă  une Ă©ruption d’une intensitĂ© exceptionnelle

    L'éruption du volcan Hunga Tonga -Hunga Ha'apai le 15 janvier 2022 : un ébranlement du systÚme Terre à l'échelle planétaire

    No full text
    L'Ă©ruption explosive du volcan Hunga Tonga - Hunga Ha’apai (HTHH), le 15 janvier 2022, a produit la plus puissante explosion enregistrĂ©e depuis les explosions du Krakatau et du Tambora dans les annĂ©es 1800, libĂ©rant une Ă©nergie Ă©quivalente Ă  110 mĂ©gatonnes de TNT. Les ondes gĂ©nĂ©rĂ©es sesont propagĂ©es dans le sol, et dans l’atmosphĂšre jusqu’à l’ionosphĂšre. L'onde atmosphĂ©rique la plus Ă©nergĂ©tique observĂ©e sur les baromĂštres correspond au mode de Lamb. De pĂ©riode supĂ©rieure Ă  2000 s, son amplitude est comparable Ă  celle observĂ©e lors de l’éruption du Krakatau en 1883. L’empreinte des perturbations atmosphĂ©riques a Ă©tĂ© caractĂ©risĂ©e Ă  l’échelle planĂ©taire par des rĂ©seaux de mesures au sol, Ă  bord de satellites ou de plateformes aĂ©roportĂ©es. L’analyse combinĂ©e de ces observations a permis d’évaluer les consĂ©quences Ă  court terme de l'Ă©ruption du HTHH. Les mĂ©thodes d'investigation gĂ©ophysiques prĂ©sentĂ©es dans cette note montrent l’apport d’analyses interdisciplinaires pour caractĂ©riser la rĂ©ponse impulsionnelle des enveloppes fluides planĂ©taires (atmosphĂšre, ocĂ©ans et mers) Ă  une Ă©ruption d’une intensitĂ© exceptionnelle
    corecore