1,682 research outputs found

    Hot Electrons and Cold Photons: Galaxy Clusters and the Sunyaev-Zel'dovich Effect

    Get PDF
    The hot gas in clusters of galaxies emits thermal bremsstrahlung emission that can be probed directly through measurements in the X-ray band with satellites like ROSAT and ASCA. Another probe of this gas comes from its effect on the cosmic microwave background radiation (CMBR): the hot cluster electrons inverse Compton scatter the CMBR photons and thereby distort the background radiation from its blackbody spectral form. In the last few years, the development of sensitive new instruments for measuring this distortion, called the Sunyaev-Zel'dovich (SZ) effect, has sparked a revolution in the field. Current radio interferometric arrays can now detect and map the SZ effect in even distant (z ~ 1) clusters. It is well known that one of the purposes of conducting such measurements is to determine the Hubble constant. In this review I report on the progress that has been made in this area, quote the current best estimate of Ho from the SZ effect of 8 galaxy clusters (44 - 64 km/s/Mpc +/- 17%), discuss important systematic uncertainties, and highlight what else has been learned about galaxy clusters from these investigations.Comment: 4 pages, including 2 postscript figs, LaTeX. To appear in the proceedings of IAU Symposium 188 "The Hot Universe" (held August 26-30, 1997, Kyoto, Japan

    Optical spectroscopy of EX Lupi during quiescence and outburst: Infall, wind, and dynamics in the accretion flow

    Full text link
    We explore the accretion mechanisms in EX Lupi, prototype of EXor variables, during its quiescence and outburst phases. We analyse high-resolution optical spectra taken before, during, and after its 2008 outburst. In quiescence and outburst, the star presents many permitted emission lines, including typical CTTS lines and numerous neutral and ionized metallic lines. During the outburst, the number of emission lines increases to over a thousand, with narrow plus broad component structure (NC+BC). The BC profile is highly variable on short timescales (24-72h). An active chromosphere can explain the metallic lines in quiescence and the outburst NC. The dynamics of the BC line profiles suggest an origin in a hot, dense, non-axisymmetric, and non-uniform accretion column that suffers velocity variations along the line-of-sight on timescales of days. Assuming Keplerian rotation, the emitting region would be located at ~0.1-0.2 AU, consistent with the inner disk rim, but the velocity profiles of the lines reveal a combination of rotation and infall. Line ratios of ions and neutrals can be reproduced with a temperature of T~6500 K for electron densities of a few times 1012^{12}cm3^{-3} in the line-emitting region. The data confirm that the 2008 outburst was an episode of increased accretion, albeit much stronger than previous EX Lupi and typical EXors outbursts. The line profiles are consistent with the infall/rotation of a non-axisymmetric structure that could be produced by clumpy accretion during the outburst phase. A strong inner disk wind appears in the epochs of higher accretion. The rapid recovery of the system after the outburst and the similarity between the pre-outburst and post-outburst states suggest that the accretion channels are similar during the whole period, and only the accretion rate varies, providing a superb environment for studying the accretion processes.Comment: 15 pages plus 26 pages online material, accepted by A&

    Efficient creation of molecules from a cesium Bose-Einstein condensate

    Full text link
    We report a new scheme to create weakly bound Cs2_2 molecules from an atomic Bose-Einstein condensate. The method is based on switching the magnetic field to a narrow Feshbach resonance and yields a high atom-molecule conversion efficiency of more than 30%, a factor of three higher than obtained with conventional magnetic-field ramps. The Cs2_2 molecules are created in a single gg-wave rotational quantum state. The observed dependence of the conversion efficiency on the magnetic field and atom density shows scattering processes beyond two-body coupling to occur in the vicinity of the Feshbach resonance.Comment: 7 pages, 4 figures, submitted to Europhysics Letter

    Ab initio explanation of disorder and off-stoichiometry in Fe-Mn-Al-C kappa carbides

    Full text link
    Carbides play a central role for the strength and ductility in many materials. Simulating the impact of these precipitates on the mechanical performance requires the knowledge about their atomic configuration. In particular, the C content is often observed to substantially deviate from the ideal stoichiometric composition. In the present work, we focus on Fe-Mn-Al-C steels, for which we determined the composition of the nano-sized kappa carbides (Fe,Mn)3AlC by atom probe tomography (APT) in comparison to larger precipitates located in grain boundaries. Combining density functional theory with thermodynamic concepts, we first determine the critical temperatures for the presence of chemical and magentic disorder in these carbides. Secondly, the experimentally observed reduction of the C content is explained as a compromise between the gain in chemical energy during partitioning and the elastic strains emerging in coherent microstructures

    The role of electric current in the formation of white-etching-cracks

    Get PDF

    EX Lupi in quiescence

    Full text link
    EX Lup is the prototype of EXors, a subclass of low-mass pre-main sequence stars whose episodic eruptions are attributed to temporarily increased accretion. In quiescence the optical and near-infrared properties of EX Lup cannot be distinguished from those of normal T Tau stars. Here we investigate whether it is the circumstellar disk structure which makes EX Lup an atypical Class II object. During outburst the disk might undergo structural changes. Our characterization of the quiescent disk is intended to serve as a reference to study the physical changes related to one of EX Lupi's strongest known eruptions in 2008 Jan-Sep. We searched the literature for photometric and spectroscopic observations including ground-based, IRAS, ISO and Spitzer data. After constructing the optical-infrared spectral energy distribution (SED), we compared it with the typical SEDs of other young stellar objects and modeled it using the Monte Carlo radiative transfer code RADMC. A mineralogical decomposition of the 10 micron silicate emission feature and also the description of the optical and near-infrared spectra were performed. The SED is in general similar to that of a typical T Tauri star, though above 7 micron EX Lup emits higher flux. The quiescent phase data suggest low level variability in the optical-mid-infrared domain. Integrating the optical and infrared fluxes we derived a bolometric luminosity of 0.7 L_Sun. The 10 micron silicate profile could be fitted by a mixture consisting of amorphous silicates, no crystalline silicates were found. A modestly flaring disk model with a total mass of 0.025 M_Sun and an outer radius of 150 AU was able to reproduce the observed SED. The derived inner radius of 0.2 AU is larger than the sublimation radius, and this inner gap sets EX Lup aside from typical T Tauri stars.Comment: Accepted for publication in Astronomy and Astrophysics, 10 pages, 6 figure

    Pre-Main Sequence variables in the VMR-D : identification of T Tauri-like accreting protostars through Spitzer-IRAC variability

    Full text link
    We present a study of the infrared variability of young stellar objects by means of two Spitzer-IRAC images of the Vela Molecular Cloud D (VMR-D) obtained in observations separated in time by about six months. By using the same space-born IR instrumentation, this study eliminates all the unwanted effects usually unavoidable when comparing catalogs obtained from different instruments. The VMR-D map covers about 1.5 square deg. of a site where star formation is actively ongoing. We are interested in accreting pre-main sequence variables whose luminosity variations are due to intermittent events of disk accretion (i.e. active T Tauri stars and EXor type objects). The variable objects have been selected from a catalog of more than 170,000 sources detected at a S/N ratio > 5. We searched the sample of variables for ones whose photometric properties are close to those of known EXor's. These latter are monitored in a more systematic way than T Tauri stars and the mechanisms that regulate the observed phenomenology are exactly the same. Hence the modalities of the EXor behavior is adopted as driving criterium for selecting variables in general. We selected 19 bona fide candidates that constitute a well-defined sample of new variable targets for further investigation. Out of these, 10 sources present a Spitzer MIPS 24 micron counterpart, and have been classified as 3 Class I, 5 flat spectrum and 2 Class II objects, while the other 9 sources have spectral energy distribution compatible with phases older than Class I. This is consistent with what is known about the small sample of known EXor's, and suggests that the accretion flaring or EXor stage might come as a Class I/II transition. We present also new prescriptions that can be useful in future searches for accretion variables in large IR databases.Comment: 35 pages, 12 figures To appear in Ap
    corecore