151 research outputs found

    Escape path complexity and its context dependency in Pacific blue-eyes (Pseudomugil signifer)

    Full text link
    The escape trajectories animals take following a predatory attack appear to show high degrees of apparent 'randomness' - a property that has been described as 'protean behaviour'. Here we present a method of quantifying the escape trajectories of individual animals using a path complexity approach. When fish (Pseudomugil signifer) were attacked either on their own or in groups, we find that an individual's path rapidly increases in entropy (our measure of complexity) following the attack. For individuals on their own, this entropy remains elevated (indicating a more random path) for a sustained period (10 seconds) after the attack, whilst it falls more quickly for individuals in groups. The entropy of the path is context dependent. When attacks towards single fish come from greater distances, a fish's path shows less complexity compared to attacks that come from short range. This context dependency effect did not exist, however, when individuals were in groups. Nor did the path complexity of individuals in groups depend on a fish's local density of neighbours. We separate out the components of speed and direction changes to determine which of these components contributes to the overall increase in path complexity following an attack. We found that both speed and direction measures contribute similarly to an individual's path's complexity in absolute terms. Our work highlights the adaptive behavioural tactics that animals use to avoid predators and also provides a novel method for quantifying the escape trajectories of animals.Comment: 9 page

    Predators attacking virtual prey reveal the costs and benefits of leadership.

    Get PDF
    A long-standing assumption in social behavior is that leadership incurs costs as well as benefits, and this tradeoff can result in diversified social roles in groups. The major cost of leadership in moving animal groups is assumed to be predation, with individuals leading from the front of groups being targeted more often by predators. Nevertheless, empirical evidence for this is limited, and experimental tests are entirely lacking. To avoid confounding effects associated with observational studies, we presented a simulation of virtual prey to real fish predators to directly assess the predation cost of leadership. Prey leading others are at greater risk than those in the middle of groups, confirming that any benefits of leading may be offset by predation costs. Importantly, however, followers confer a net safety benefit to leaders, as prey leading others were less likely to be attacked compared with solitary prey. We also find that the predators preferentially attacked when solitary individuals were more frequent, but this effect was relatively weak compared with the preference for attacking solitary prey during an attack. Using virtual prey, where the appearance and behavior of the prey can be manipulated and controlled exactly, we reveal a hierarchy of risk from solitary to leading to following social strategies. Our results suggest that goal-orientated individuals (i.e., potential leaders) are under selective pressure to maintain group cohesion, favoring effective leadership rather than group fragmentation. Our results have significant implications for understanding the evolution and maintenance of different social roles in groups.his work was supported by Natural Environment Research Council Independent Research Fellowship NE/K009370/1 and Leverhulme Trust Grant RPG-2017-041 V (to C.C.I.)

    Quantifying the structure and dynamics of fish shoals under predation threat in three dimensions

    Get PDF
    Detailed quantifications of how predators and their grouping prey interact in three dimensions (3D) remain rare. Here we record the structure and dynamics of fish shoals (Pseudomugil signifer) in 3D both with and without live predators (Philypnodon grandiceps) under controlled laboratory conditions. Shoals adopted two distinct types of shoal structure; 'sphere-like' geometries at depth, and flat 'carpet-like' structures at the water's surface, with shoals becoming more compact in both horizontal and vertical planes in the presence of a predator. The predators actively stalked and at- tacked the prey, with attacks being initiated when the shoals were not in their usual configurations. These attacks caused the shoals to break apart, but shoal reformation was rapid, and involved individuals adjusting their positions in both horizontal and vertical dimensions. Our analyses revealed that targeted prey were more isolated from other conspecifics, and were closer in terms of distance and direction to the predator compared to non-targeted prey. Moreover, which prey were targeted could largely be identified based on individuals' positions from a single plane. This highlights that previously proposed 2D theoretical models and their assumptions appear valid when considering how predators target groups in 3D. Our work provides experimental, and not just anecdotal, sup- port for classic theoretical predictions, and also lends new insights into predatory-prey interactions in three-dimensional environments

    Anthropogenic noise pollution from pile-driving disrupts the structure and dynamics of fish shoals

    Get PDF
    Noise produced from a variety of human activities can affect the physiology and behaviour of individual animals, but whether noise disrupts the social behaviour of animals is largely unknown. Animal groups such as flocks of birds or shoals of fish use simple interaction rules to coordinate their movements with near neighbours. In turn, this coordination allows individuals to gain the benefits of group living such as reduced predation risk and social information exchange. Noise could change how individuals interact in groups if noise is perceived as a threat, or if it masked, distracted or stressed individuals, and this could have impacts on the benefits of grouping. Here, we recorded trajectories of individual juvenile seabass (<i>Dicentrarchus labrax</i>) in groups under controlled laboratory conditions. Groups were exposed to playbacks of either ambient background sound recorded in their natural habitat, or playbacks of pile-driving, commonly used in marine construction. The pile-driving playback affected the structure and dynamics of the fish shoals significantly more than the ambient-sound playback. Compared to the ambient-sound playback, groups experiencing the pile-driving playback became less cohesive, less directionally ordered, and were less correlated in speed and directional changes. In effect, the additional-noise treatment disrupted the abilities of individuals to coordinate their movements with one another. Our work highlights the potential for noise pollution from pile-driving to disrupt the collective dynamics of fish shoals, which could have implications for the functional benefits of groups' collective behaviour

    Local interactions and global properties of wild, free-ranging stickleback shoals

    Get PDF
    Funding: Australian Research Council. A.J.W.W. and T.M.S. were supported by a Discovery Project Grant from the Australian Research Council. D.J.T.S. and J.E.H.-R. were supported by a Knut & Alice Wallenberg Foundation Grant.Collective motion describes the global properties of moving groups of animals and the self-organized, coordinated patterns of individual behaviour that produce them. We examined the group-level patterns and local interactions between individuals in wild, free-ranging shoals of three-spine sticklebacks, Gasterosteus aculeatus. Our data reveal that the highest frequencies of near-neighbour encounters occur at between one and two body lengths from a focal fish, with the peak frequency alongside a focal individual. Fish also show the highest alignment with these laterally placed individuals, and generally with animals in front of themselves. Furthermore, fish are more closely matched in size, speed and orientation to their near neighbours than to more distant neighbours, indicating local organization within groups. Among the group level properties reported here, we find that polarization is strongly influenced by group speed, but also the variation in speed among individuals and the nearest neighbour distances of group members. While we find no relationship between group order and group size, we do find that larger groups tend to have lower nearest neighbour distances, which in turn may be important in maintaining group order.Publisher PDFPeer reviewe

    How predation shapes the social interaction rules of shoaling fish

    Get PDF
    Predation is thought to shape the macroscopic properties of animal groups, making moving groups more cohesive and coordinated. Precisely how predation has shaped individuals' fine-scale social interactions in natural populations, however, is unknown. Using high-resolution tracking data of shoaling fish (Poecilia reticulata) from populations differing in natural predation pressure, we show how predation adapts individuals' social interaction rules. Fish originating from high predation environments formed larger, more cohesive, but not more polarized groups than fish from low predation environments. Using a new approach to detect the discrete points in time when individuals decide to update their movements based on the available social cues, we determine how these collective properties emerge from individuals' microscopic social interactions. We first confirm predictions that predation shapes the attraction–repulsion dynamic of these fish, reducing the critical distance at which neighbours move apart, or come back together. While we find strong evidence that fish align with their near neighbours, we do not find that predation shapes the strength or likelihood of these alignment tendencies. We also find that predation sharpens individuals' acceleration and deceleration responses, implying key perceptual and energetic differences associated with how individuals move in different predation regimes. Our results reveal how predation can shape the social interactions of individuals in groups, ultimately driving differences in groups' collective behaviour.</jats:p

    Body size affects the strength of social interactions and spatial organization of a schooling fish (Pseudomugil signifer)

    Get PDF
    While a rich variety of self-propelled particle models propose to explain the collective motion of fish and other animals, rigorous statistical comparison between models and data remains a challenge. Plausible models should be flexible enough to capture changes in the collective behaviour of animal groups at their different developmental stages and group sizes. Here, we analyse the statistical properties of schooling fish (Pseudomugil signifer) through a combination of experiments and simulations. We make novel use of a Boltzmann inversion method, usually applied in molecular dynamics, to identify the effective potential of the mean force of fish interactions. Specifically, we show that larger fish have a larger repulsion zone, but stronger attraction, resulting in greater alignment in their collective motion. We model the collective dynamics of schools using a self-propelled particle model, modified to include varying particle speed and a local repulsion rule. We demonstrate that the statistical properties of the fish schools are reproduced by our model, thereby capturing a number of features of the behaviour and development of schooling fish

    Rapid evolution of coordinated and collective movement in response to artificial selection.

    Get PDF
    Collective motion occurs when individuals use social interaction rules to respond to the movements and positions of their neighbors. How readily these social decisions are shaped by selection remains unknown. Through artificial selection on fish (guppies, Poecilia reticulata) for increased group polarization, we demonstrate rapid evolution in how individuals use social interaction rules. Within only three generations, groups of polarization-selected females showed a 15% increase in polarization, coupled with increased cohesiveness, compared to fish from control lines. Although lines did not differ in their physical swimming ability or exploratory behavior, polarization-selected fish adopted faster speeds, particularly in social contexts, and showed stronger alignment and attraction responses to multiple neighbors. Our results reveal the social interaction rules that change when collective behavior evolves
    • …
    corecore