189 research outputs found
Current evidence of climate-driven colour change in insects and its impact on sexual signals
The colours of insects function in intraspecific communication such as sexual signalling, interspecific communication such as protection from predators, and in physiological processes, such as thermoregulation. The expression of melanin-based colours is temperature-dependent and thus likely to be impacted by a changing climate. However, it is unclear how climate change drives changes in body and wing colour may impact insect physiology and their interactions with conspecifics (e.g. mates) or heterospecific (e.g. predators or prey). The aim of this review is to synthesise the current knowledge of the consequences of climate-driven colour change on insects. Here, we discuss the environmental factors that affect insect colours, and then we outline the adaptive mechanisms in terms of phenotypic plasticity and microevolutionary response. Throughout we discuss the impact of climate-related colour change on insect physiology, and interactions with con-and-heterospecifics
Cooler and drier conditions increase parasitism in a subtropical damselfly population
Host–parasite interactions are impacted by climate, which may result in variation of parasitism across landscapes and time. Understanding how parasitism varies across these spatio-temporal scales is crucial to predicting how organisms will respond to and cope under a rapidly changing climate. Empirical work on how parasitism varies across climates is limited. Here, we examine the variation of parasitism across seasons and identify the likely climatic factors that explain this variation using Agriocnemis femina damselflies and Arrenurus water mite ectoparasites as a host–parasite study system. We assessed parasitism in a natural population in Sylhet, Bangladesh which is located in subtropical climate between 2021 and 2023. We calculated prevalence (proportion of infected individuals) and intensity (the number of parasites on an infected individual) of parasitism across different seasons. Parasite prevalence and intensity were greater during cooler seasons (autumn and winter) compared to hotter seasons (spring and summer). Mean temperature and precipitation were negatively correlated with parasite prevalence, whereas only mean precipitation was negatively correlated with parasite intensity. Tropical, subtropical and mediterranean regions are predicted to experience extreme climatic events (extreme temperature, less precipitation and frequent drought) as a consequence of anthropogenic climate change, and our finding suggests that this might alter patterns of parasitism in aquatic insects
Small behavioral adaptations enable more effective prey capture by producing 3D-structured spider threads
Spiders are known for producing specialized fibers. The radial orb-web, for example, contains tough silk used for the web frame and the capture spiral consists of elastic silk, able to stretch when prey impacts the web. In concert, silk proteins and web geometry affects the spider’s ability to capture prey. Both factors have received considerable research attention, but next to no attention has been paid to the influence of fiber processing on web performance. Cribellate spiders produce a complex fiber alignment as their capture threads. With a temporally controlled spinneret movement, they connect different fibers at specific points to each other. One of the most complex capture threads is produced by the southern house spider, Kukulcania hibernalis (Filistatidae). In contrast to the so far characterized linear threads of other cribellate spiders, K. hibernalis spins capture threads in a zigzag pattern due to a slightly altered spinneret movement. The resulting more complex fiber alignment increased the thread’s overall ability to restrain prey, probably by increasing the adhesion area as well as its extensibility. Kukulcania hibernalis' cribellate silk perfectly illustrates the impact of small behavioral differences on the thread assembly and, thus, of silk functionality.Fil: Grannemann, Caroline C. F.. Rwth Aachen University; AlemaniaFil: Meyer, Marcos. Rwth Aachen University; AlemaniaFil: Reinhardt, Marian. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Museo Argentino de Ciencias Naturales "Bernardino Rivadavia"; ArgentinaFil: Ramirez, Martin Javier. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Museo Argentino de Ciencias Naturales "Bernardino Rivadavia"; ArgentinaFil: Herberstein, Marie E.. Macquarie University; AustraliaFil: Joel, Anna Christin. Macquarie University; Australia. Rwth Aachen University; Alemani
An integrative framework for the appraisal of coloration in nature
The world in color presents a dazzling dimension of phenotypic variation. Biological interest in this variation has burgeoned, due to both increased means for quantifying spectral information and heightened appreciation for how animals view the world differently than humans. Effective study of color traits is challenged by how to best quantify visual perception in nonhuman species. This requires consideration of at least visual physiology but ultimately also the neural processes underlying perception. Our knowledge of color perception is founded largely on the principles gained from human psychophysics that have proven generalizable based on comparative studies in select animal models. Appreciation of these principles, their empirical foundation, and the reasonable limits to their applicability is crucial to reaching informed conclusions in color research. In this article, we seek a common intellectual basis for the study of color in nature. We first discuss the key perceptual principles, namely, retinal photoreception, sensory channels, opponent processing, color constancy, and receptor noise. We then draw on this basis to inform an analytical framework driven by the research question in relation to identifiable viewers and visual tasks of interest. Consideration of the limits to perceptual inference guides two primary decisions: first, whether a sensory-based approach is necessary and justified and, second, whether the visual task refers to perceptual distance or discriminability. We outline informed approaches in each situation and discuss key challenges for future progress, focusing particularly on how animals perceive color. Given that animal behavior serves as both the basic unit of psychophysics and the ultimate driver of color ecology/evolution, behavioral data are critical to reconciling knowledge across the schools of color research
The World Spider Trait database: a centralized global open repository for curated data on spider traits
Spiders are a highly diversified group of arthropods and play an important role in terrestrial ecosystems as ubiquitous predators, which makes them a suitable group to test a variety of eco-evolutionary hypotheses. For this purpose, knowledge of a diverse range of species traits is required. Until now, data on spider traits have been scattered across thousands of publications produced for over two centuries and written in diverse languages. To facilitate access to such data, we developed an online database for archiving and accessing spider traits at a global scale. The database has been designed to accommodate a great variety of traits (e.g. ecological, behavioural and morphological) measured at individual, species or higher taxonomic levels. Records are accompanied by extensive metadata (e.g. location and method). The database is curated by an expert team, regularly updated and open to any user. A future goal of the growing database is to include all published and unpublished data on spider traits provided by experts worldwide and to facilitate broad cross-taxon assays in functional ecology and comparative biology.Fil: Pekár, Stano. Masaryk University; República ChecaFil: Wolff, Jonas O. University of Greifswald; AlemaniaFil: Cernecká, L'udmila. Slovak Academy of Sciences; ArgentinaFil: Birkhofer, Klaus. Brandenburgische Technische Universität Cottbus; AlemaniaFil: Mammola, Stefano. University of Helsinki; FinlandiaFil: Lowe, Elizabeth C.. Macquarie University; AustraliaFil: Fukushima, Caroline S.. University of Helsinki; FinlandiaFil: Herberstein, Marie E.. Macquarie University; AustraliaFil: Kucera, Adam. Masaryk University; República ChecaFil: Buzatto, Bruno A.. University of Western Australia; AustraliaFil: Djoudi, El Aziz. Brandenburgische Technische Universität Cottbus; AlemaniaFil: Domenech, Marc. Universidad de Barcelona; EspañaFil: Enciso, Alison Vanesa. Fundación Protectora Ambiental Planadas Tolima; ColombiaFil: Piñanez Espejo, Yolanda María Guadalupe. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Nordeste. Instituto de Biología Subtropical. Instituto de Biología Subtropical - Nodo Posadas | Universidad Nacional de Misiones. Instituto de Biología Subtropical. Instituto de Biología Subtropical - Nodo Posadas; ArgentinaFil: Febles, Sara. No especifíca;Fil: García, Luis F. Universidad de la República; UruguayFil: Gonçalves Souza, Thiago. Universidad Federal Rural Pernambuco; BrasilFil: Isaia, Marco. Università di Torino; ItaliaFil: Lafage, Denis. Universite de Rennes I; FranciaFil: Líznarová, Eva. Masaryk University; República ChecaFil: Macías Hernández, Nuria. Universidad de La Laguna; EspañaFil: Fiorini de Magalhaes, Ivan Luiz. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Museo Argentino de Ciencias Naturales "Bernardino Rivadavia"; ArgentinaFil: Malumbres Olarte, Jagoba. Universidade Dos Açores; PortugalFil: Michálek, Ondrej. Masaryk University; República ChecaFil: Michalik, Peter. ERNST MORITZ ARNDT UNIVERSITÄT GREIFSWALD (UG);Fil: Michalko, Radek. No especifíca;Fil: Milano, Filippo. Università di Torino; ItaliaFil: Munévar, Ana. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Nordeste. Instituto de Biología Subtropical. Instituto de Biología Subtropical - Nodo Puerto Iguazú | Universidad Nacional de Misiones. Instituto de Biología Subtropical. Instituto de Biología Subtropical - Nodo Puerto Iguazú; ArgentinaFil: Nentwig, Wolfgang. University of Bern; SuizaFil: Nicolosi, Giuseppe. Università di Torino; ItaliaFil: Painting, Christina J. No especifíca;Fil: Pétillon, Julien. Universite de Rennes I; FranciaFil: Piano, Elena. Università di Torino; ItaliaFil: Privet, Kaïna. Universite de Rennes I; FranciaFil: Ramirez, Martin Javier. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Museo Argentino de Ciencias Naturales "Bernardino Rivadavia"; ArgentinaFil: Ramos, Cândida. No especifíca;Fil: Rezác, Milan. No especifíca;Fil: Ridel, Aurélien. Universite de Rennes I; FranciaFil: Ruzicka, Vlastimil. No especifíca;Fil: Santos, Irene. No especifíca;Fil: Sentenská, Lenka. Masaryk University; República ChecaFil: Walker, Leilani. No especifíca;Fil: Wierucka, Kaja. Universitat Zurich; SuizaFil: Zurita, Gustavo Andres. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Nordeste. Instituto de Biología Subtropical. Instituto de Biología Subtropical - Nodo Posadas | Universidad Nacional de Misiones. Instituto de Biología Subtropical. Instituto de Biología Subtropical - Nodo Posadas; ArgentinaFil: Cardoso, Pedro. No especifíca
The World Spider Trait database : a centralised global open repository for curated data on spider traits
Publisher Copyright: © The Author(s) 2021. Published by Oxford University Press.Spiders are a highly diversified group of arthropods and play an important role in terrestrial ecosystems as ubiquitous predators, which makes them a suitable group to test a variety of eco-evolutionary hypotheses. For this purpose, knowledge of a diverse range of species traits is required. Until now, data on spider traits have been scattered across thousands of publications produced for over two centuries and written in diverse languages. To facilitate access to such data, we developed an online database for archiving and accessing spider traits at a global scale. The database has been designed to accommodate a great variety of traits (e.g. ecological, behavioural and morphological) measured at individual, species or higher taxonomic levels. Records are accompanied by extensive metadata (e.g. location and method). The database is curated by an expert team, regularly updated and open to any user. A future goal of the growing database is to include all published and unpublished data on spider traits provided by experts worldwide and to facilitate broad cross-taxon assays in functional ecology and comparative biology. Database URL:https://spidertraits.sci.muni.cz/.Peer reviewe
Is Drosphila the answer? The role of model species in biological research
Biological research has been dominated by focussed effort on few model species and recent commentaries further discourage broadening the range of study species. It is undeniable that we now have unprecedented detail of information on the genetic, molecular and cellular biology of model species, but whether their biology can be broadly generalised is unclear. By channelling research into a limited range of species, we miss the opportunity to test theory on a wider range of species and the discovery of new biological phenomena. With new technologies and laboratory facilities becoming more affordable and accessible, establishing new species as models has never been more promising and important.2 page(s
- …