53 research outputs found

    Understanding dental students’ use of feedback

    Get PDF
    Introduction Feedback can enhance learning and is thought to be highly valued by students; however, it is not clear from the literature how dental students actually use feedback. Aim This study aimed to explore how dental students use feedback in a variety of contexts. Methods Qualitative methods involving audio‐recorded focus groups were used to explore the use of feedback by undergraduate dental students studying at three UK dental schools. A purposive sampling strategy was used to ensure diverse representation across the undergraduate dental programmes in each of the schools. Results Six focus groups, involving a total of 72 students, were undertaken. Thematic analysis identified five main themes relating to the use of feedback: value, future applicability, accessibility, variability and understanding. The inter‐connectivity and interaction of the themes (along with their subthemes) were used to develop a model for optimising feedback with the aim of enhancing its potential use by students. Conclusion The use of feedback by students would appear to be strongly influenced by several factors. Understanding these factors and how they interlink may be helpful to education providers who are seeking to optimise their feedback processes

    Making connections: technological interventions to support students in using, and tutors in creating, assessment feedback

    Get PDF
    This paper explores the potential of technology to enhance the assessment and feedback process for both staff and students. The ‘Making Connections’ project aimed to better understand the connections that students make between the feedback that they receive and future assignments, and explored whether technology can help them in this activity. The project interviewed 10 tutors and 20 students, using a semi-structured approach. Data were analysed using a thematic approach, and the findings have identified a number of areas in which improvements could be made to the assessment and feedback process through the use of technology. The findings of the study cover each stage of the assessment process from the perspective of both staff and students. The findings are discussed in the context of current literature, and special attention is given to projects from the UK higher education sector intended to address the same issues. Keywords: feed-forward; assessment; practices; technology; technology-enhanced learnin

    Transport behavior of holes in boron delta-doped diamond structures

    Get PDF
    Boron delta-doped diamond structures have been synthesized using microwave plasma chemical vapor deposition and fabricated into FET and gated Hall bar devices for assessment of the electrical characteristics. A detailed study of variable temperature Hall, conductivity, and field-effect mobility measurements was completed. This was supported by Schr€dinger-Poisson and relaxation time o calculations based upon application of Fermi’s golden rule. A two carrier-type model was developed with an activation energy of 0.2eVbetweenthedeltalayerlowestsubbandwithmobility0.2 eV between the delta layer lowest subband with mobility 1 cm2/Vs and the bulk valence band with high mobility. This new understanding of the transport of holes in such boron delta-doped structures has shown that although Hall mobility as high as 900 cm2/Vs was measured at room temperature, this dramatically overstates the actual useful performance of the device

    Phase Stability and Electronic Properties of Hybrid Organic–Inorganic Perovskite Solid Solution (CH(NH2)2)x(CH3NH3)1–xPb(BryI1–y)3 as a Function of Composition

    Get PDF
    Compositional mixing provides the means to maintain the structural stability of a hybrid organic–inorganic perovskite for efficient and robust photovoltaic applications. Here we present a theoretical, first-principles study of the electronic and energetic properties of the solid solution (CH(NH2)2)x(CH3NH3)1–xPbBryI1–y, the mixing of two organic molecules with various orientations, formamidinium and methylammonium, and two halides, bromide and iodide. Our results show the variation in the band gap as a function of composition (x and y) provides several candidates that exceed the 27.5% Schockley–Queisser efficiency. The variation in the composition of hybrid perovskite shows specific regions where either the hexagonal or cubic phase dominates. We discuss the balance between the band gap and phase stability and indicate regions where the phase transition temperature between cubic and hexagonal phases is far from room temperature, indicating that these compositions are more robust at room temperature against phase transitions

    Audio versus written feedback: exploring learners’ preference and the impact of feedback format on students’ academic performance

    Get PDF
    Very little is known about the impact of the different types of feedback on students’ academic performance. This paper explores students’ preference in the use of audio and written feedback and how each type of feedback received by students impact on their academic performance in subsequent assignments. The study involved 68 students who were divided into two groups that received either audio or written feedback in their first assignment which was then recalled and applied into the second assignment. An analysis of results obtained in the second assignment was conducted and comparisons made between students in the audio and written feedback group. Students were also surveyed using an online questionnaire to ascertain their perceptions about the type of feedback they had received. The study established that the type of feedback received did not impact on students’ grades in the subsequent assignment. In addition, while students were broadly positive about audio feedback, they indicated a strong preference for written feedback in future assignments. The study recommends, among other things, further investigation into the link between students’ learning styles and their preferences for different types of feedback

    Examining increased flexibility in assessment formats

    Get PDF
    There have been calls in the literature for changes to assessment practices in higher education, to increase flexibility and give learners more control over the assessment process (Boud and Falchikov 2006; Nicol and MacFarlane-Dick 2006; Taras 2002). This article explores the possibilities of allowing student choice in the format used to present their work, as a starting point for changing assessment, based on recent studies and current examples of flexible assessment practice in Higher Education. The benefits of this flexible assessment format approach are highlighted, along with a discussion of classic assessment considerations such as validity, reliability and marking concerns. The role of technology in facilitating assessment method choice is considered, in terms of new opportunities for providing student choice in the way they evidence their learning and present their work. Considerations for implementing flexible assessment choices into the curriculum are presented, along with a call that further research into such practice is needed to develop a comprehensive set of practical recommendations and best practice for implementation of flexible assessment choice into the curriculum. The article should be of interest to curriculum developers and academics considering implementing changes to the assessment process to increase student ownership and control

    Quantum thermal transport in nanostructures

    Full text link
    In this colloquia review we discuss methods for thermal transport calculations for nanojunctions connected to two semi-infinite leads served as heat-baths. Our emphases are on fundamental quantum theory and atomistic models. We begin with an introduction of the Landauer formula for ballistic thermal transport and give its derivation from scattering wave point of view. Several methods (scattering boundary condition, mode-matching, Piccard and Caroli formulas) of calculating the phonon transmission coefficients are given. The nonequilibrium Green's function (NEGF) method is reviewed and the Caroli formula is derived. We also give iterative methods and an algorithm based on a generalized eigenvalue problem for the calculation of surface Green's functions, which are starting point for an NEGF calculation. A systematic exposition for the NEGF method is presented, starting with the fundamental definitions of the Green's functions, and ending with equations of motion for the contour ordered Green's functions and Feynman diagrammatic expansion. In the later part, we discuss the treatments of nonlinear effects in heat conduction, including a phenomenological expression for the transmission, NEGF for phonon-phonon interactions, molecular dynamics (generalized Langevin) with quantum heat-baths, and electron-phonon interactions. Some new results are also shown. We also briefly review the experimental status of the thermal transport measurements in nanostructures.Comment: 24 pages, 10 figures, over 200 reference

    Masking marks: encouraging student engagement with useful feedback

    No full text
    Students comment that feedback provided on their assessments is often not quick enough and does not always help clarify things they do not understand. The way in which Blackboard has been customised to support the generation and timely provision of useful student feedback will be presente
    corecore