6,270 research outputs found

    Local adaptation to hosts and parasitoids shape Hamiltonella defensa genotypes across aphid species

    Get PDF
    Facultative symbionts are common in insects and can provide their hosts with significant adaptations. Yet we still have a limited understanding of what shapes their distributions, such as why particular symbiont strains are common in some host species yet absent in others. To address this question, we genotyped the defensive symbiont Hamiltonella defensa in 26 aphid species that commonly carry this microbe. We found that Hamiltonella strains were strongly associated with specific aphid species and that strains found in one host species rarely occurred in others. To explain these associations, we reciprocally transferred the Hamiltonella strains of three aphid species, Acyrthosiphon pisum, Macrosiphoniella artemisiae and Macrosiphum euphorbiae, and assessed the impact of Hamiltonella strain on: the stability of the symbiosis, aphid fecundity and parasitoid resistance. We demonstrate that the Hamiltonella strains found in nature are locally adapted to specific aphid hosts, and their ecology: aphids tend to carry Hamiltonella strains that are efficiently transmitted to their offspring, non-lethal, and that provide strong protection against their dominant parasitoid species. Our results suggest that facultative symbiont distributions are shaped by selection from natural enemies, and the host itself, resulting in locally adapted symbioses that provide significant benefits against prevailing natural enemies

    Genetic Mapping of Soybean Cyst Nematode (Heterodera glycines) Resistance to Enhance Soybean Production in the United States [abstract]

    Get PDF
    Only abstract of poster available.Track V: BiomassSoybean cyst nematode (SCN, Heterodera glycines) is the most destructive pest of soybean in the United States, resulting in an annual extensive yield loss of approximately $1.5 billion in the United States alone. Breeding for resistance to SCN is the most effective approach to control this pest. However, most of commercial soybean varieties resistant to SCN were mainly derived from a few common resistant sources. The continuation of growing the same resistant cultivar(s) have resulted in SCN population shifts and loss of SCN resistance; thus it highlights a need of further investigation to mine new resistant genes from new resistant sources for soybean improvement. As a leading group on SCN research in the United States, the University of Missouri SCN researchers have been continuing the evaluation of exotic soybean germplasm for broad-based resistance to multi-HG types of SCN, the identification and mapping of novel quantitative trait loci (QTL)/gene(s), and the discovery of genetic markers for marker-assisted selection (MAS) programs. Using many plant introductions (PIs) with high resistance to multi-SCN HG types, we have developed genetic populations for molecular characterization and QTL mapping. These efforts led to the discovery of many novel QTL underlying the resistance to multi-SCN HG types. With sequence information using the genome-wide Illumina/Solexa sequencing technology, we have developed hundreds of genetic markers associated with the target QTL. Along with the soybean physical and genetic maps, these markers will provide a powerful genomics tool facilitating our efforts toward fine-mapping and positional cloning of candidate genes for SCN resistance. Moreover, the QTL associated genetic markers are greatly useful to incorporate novel resistant genes into new soybean varieties through the MAS approach. With SCN resistant soybean varieties, soybean yield and productivity will be increased and, in turn, enhance the seed oil production; which will significantly be an important source for the development of biofuel

    Genetic marker anchoring by six-dimensional pools for development of a soybean physical map

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Integrated genetic and physical maps are extremely valuable for genomic studies and as important references for assembling whole genome shotgun sequences. Screening of a BAC library using molecular markers is an indispensable procedure for integration of both physical and genetic maps of a genome. Molecular markers provide anchor points for integration of genetic and physical maps and also validate BAC contigs assembled based solely on BAC fingerprints. We employed a six-dimensional BAC pooling strategy and an <it>in silico </it>approach to anchor molecular markers onto the soybean physical map.</p> <p>Results</p> <p>A total of 1,470 markers (580 SSRs and 890 STSs) were anchored by PCR on a subset of a Williams 82 <it>Bst</it>Y I BAC library pooled into 208 pools in six dimensions. This resulted in 7,463 clones (~1× genome equivalent) associated with 1470 markers, of which the majority of clones (6,157, 82.5%) were anchored by one marker and 1106 (17.5%) individual clones contained two or more markers. This contributed to 1184 contigs having anchor points through this 6-D pool screening effort. In parallel, the 21,700 soybean Unigene set from NCBI was used to perform <it>in silico </it>mapping on 80,700 Williams 82 BAC end sequences (BES). This <it>in silico </it>analysis yielded 9,835 positive results anchored by 4152 unigenes that contributed to 1305 contigs and 1624 singletons. Among the 1305 contigs, 305 have not been previously anchored by PCR. Therefore, 1489 (78.8%) of 1893 contigs are anchored with molecular markers. These results are being integrated with BAC fingerprints to assemble the BAC contigs. Ultimately, these efforts will lead to an integrated physical and genetic map resource.</p> <p>Conclusion</p> <p>We demonstrated that the six-dimensional soybean BAC pools can be efficiently used to anchor markers to soybean BACs despite the complexity of the soybean genome. In addition to anchoring markers, the 6-D pooling method was also effective for targeting BAC clones for investigating gene families and duplicated regions in the genome, as well as for extending physical map contigs.</p

    HIFLUGCS: Galaxy cluster scaling relations between X-ray luminosity, gas mass, cluster radius, and velocity dispersion

    Full text link
    We present relations between X-ray luminosity and velocity dispersion (L-sigma), X-ray luminosity and gas mass (L-Mgas), and cluster radius and velocity dispersion (r500-sigma) for 62 galaxy clusters in the HIFLUGCS, an X-ray flux-limited sample minimizing bias toward any cluster morphology. Our analysis in total is based on ~1.3Ms of clean X-ray XMM-Newton data and 13439 cluster member galaxies with redshifts. Cool cores are among the major contributors to the scatter in the L-sigma relation. When the cool-core-corrected X-ray luminosity is used the intrinsic scatter decreases to 0.27 dex. Even after the X-ray luminosity is corrected for the cool core, the scatter caused by the presence of cool cores dominates for the low-mass systems. The scatter caused by the non-cool-core clusters does not strongly depend on the mass range, and becomes dominant in the high-mass regime. The observed L-sigma relation agrees with the self-similar prediction, matches that of a simulated sample with AGN feedback disregarding six clusters with <45 cluster members with spectroscopic redshifts, and shows a common trend of increasing scatter toward the low-mass end, i.e., systems with sigma<500km/s. A comparison of observations with simulations indicates an AGN-feedback-driven impact in the low-mass regime. The best fits to the L−MgasL-M_{\rm gas} relations for the disturbed clusters and undisturbed clusters in the observational sample closely match those of the simulated samples with and without AGN feedback, respectively. This suggests that one main cause of the scatter is AGN activity providing feedback in different phases, e.g., during a feedback cycle. The slope and scatter in the observed r500-sigma relation is similar to that of the simulated sample with AGN feedback except for a small offset but still within the scatter.Comment: 45 pages, 28 figures, A&A proof-version, high-resolution figures in Appendix F can be found in the electronic version on the A&A we

    HD 17156b: A Transiting Planet with a 21.2 Day Period and an Eccentric Orbit

    Full text link
    We report the detection of transits by the 3.1 M_Jup companion to the V=8.17 G0V star HD 17156. The transit was observed by three independant observers on Sept. 9/10, 2007 (two in central Italy and one in the Canary Islands), who obtained detections at confidence levels of 3.0 sigma, 5.3 sigma, and 7.9 sigma, respectively. The observations were carried out under the auspices of the Transitsearch.org network, which organizes follow-up photometric transit searches of known planet-bearing stars during the time intervals when transits are expected to possibly occur. Analyses of the 7.9 sigma data set indicates a transit depth d=0.0062+/-0.0004, and a transit duration t=186+/-5 min. These values are consistent with the transit of a Jupiter-sized planet with an impact parameter b=a*cos(i)/R_star ~ 0.8. This planet occupies a unique regime among known transiting extrasolar planets, both as a result of its large orbital eccentricity (e=0.67) and long orbital period (P=21.2 d). The planet receives a 26-fold variation in insolation during the course of its orbit, which will make it a useful object for characterization of exoplanetary atmospheric dynamics.Comment: Accepted for publication to A&A, 4 pages, 2 figure

    A Spitzer high resolution mid-infrared spectral atlas of starburst galaxies

    Get PDF
    We present an atlas of Spitzer/IRS high resolution (R~600) 10-37um spectra for 24 well known starburst galaxies. The spectra are dominated by fine-structure lines, molecular hydrogen lines, and emission bands of polycyclic aromatic hydrocarbons. Six out of the eight objects with a known AGN component show emission of the high excitation [NeV] line. This line is also seen in one other object (NGC4194) with, a priori, no known AGN component. In addition to strong polycyclic aromatic hydrocarbon emission features in this wavelength range (11.3, 12.7, 16.4um), the spectra reveal other weak hydrocarbon features at 10.6, 13.5, 14.2um, and a previously unreported emission feature at 10.75um. An unidentified absorption feature at 13.7um is detected in many of the starbursts. We use the fine-structure lines to derive the abundance of neon and sulfur for 14 objects where the HI 7-6 line is detected. We further use the molecular hydrogen lines to sample the properties of the warm molecular gas. Several basic diagrams characterizing the properties of the sample are also shown. We have combined the spectra of all the pure starburst objects to create a high S/N template, which is available to the community.Comment: 25 pages (emulate apj), 6 tables, 14 figures, Accepted for publication in ApJ

    RXJ1716.6+6708: a young cluster at z=0.81

    Full text link
    Clusters of galaxies at redshifts nearing one are of special importance since they may be caught at the epoch of formation. At these high redshifts there are very few known clusters. We present follow-up ASCA, ROSAT HRI and Keck LRIS observations of the cluster RXJ1716.6+6708 which was discovered during the optical identification of X-ray sources in the North Ecliptic Pole region of the ROSAT All-Sky Survey. At z=0.809, RXJ1716.6+6708 is the second most distant X-ray selected cluster so far published and the only one with a large number of spectroscopically determined cluster member velocities. The optical morphology of RXJ1716.6+6708 resembles an inverted S-shape filament with the X-rays coming from the midpoint of the filament. The X-ray contours have an elongated shape that roughly coincide with the weak lensing contours. The cluster has a low temperature, kT=5.66{+1.37 -0.58} keV, and a very high velocity dispersion sigma_{los}=1522{+215 -150} km s^{-1}. While the temperature is commensurate with its X-ray luminosity of (8.19 +/- 0.43)x10^{44} h_{50}^{-2} erg s^{-1} (2-10 keV rest frame), its velocity dispersion is much higher than expected from the sigma-T_X relationship of present-day clusters with comparable X-ray luminosity. RXJ1716.6+6708 could be an example of a protocluster, where matter is flowing along filaments and the X-ray flux is maximum at the impact point of the colliding streams of matter.Comment: Latex file, 18 pages, 4 figures, accepted for publication in the Astronomical Journa

    Analog Simulation of Superconducting Loops Containing One or Two Josephson Junctions

    Get PDF
    Analog circuits are described which are capable of electronically simulating the static and dynamic behavior of sueprconducting loops containing one or two Josephson junctions when bias currents or magnetic fields are applied. Time-dependent flux enty into or out of the ring can, in either system, be observed by monitoring appropriate node voltages within the simulator circuits. The various dynamical modes observed in earlier numerical simulations are accurately reproduced. A theoretical analysis of the two-junction configuration identifies certain important cirteria which determine which of these different states the system will adopt

    Complete Nucleotide Sequence of Dendrocalamus Latiflorus and Bambusa Oldhamii Chloroplast Genomes

    Get PDF
    Although bamboo is one of the most important woody crops in Asia, information on its genome is still very limited. To investigate the relationship among Poaceae members and to understand the mechanism of albino mutant generation in vitro, the complete chloroplast genome of two economically important bamboo species, Dendrocalamus latiflorus Munro and Bambusa oldhamii Munro, was determined employing a strategy that involved polymerase chain reaction (PCR) amplification using 443 novel primers designed to amplify the chloroplast genome of these two species. The lengths of the B. oldhamii and D. latiflorus chloroplast genomes are 139,350 and 139,365 bp, respectively. The organization structure and the gene order of these two bamboos are identical to other members of Poaceae. Highly conserved chloroplast genomes of Poaceae facilitated sequencing by the PCR method. Phylogenetic analysis using both chloroplast genomes confirmed the results obtained from studies on chromosome number and reproductive organ morphology. There are 23 gaps, insertions/deletions \u3e 100 bp, in the chloroplast genomes of 10 genera of Poaceae compared in this study. The phylogenetic distribution of these gaps corresponds to their taxonomic placement. The sequences of these two chloroplast genomes provide useful information for studying bamboo evolution, ecology and biotechnology
    • …
    corecore