325 research outputs found

    Human Leukocyte Antigen Class 1 Phenotype Distribution and Analysis in Persons from Central Uganda with Active Tuberculosis and Latent Mycobacterium tuberculosis Infection

    Get PDF
    Background: The Ugandan population is heavily affected by infectious diseases and Human leukocyte antigen (HLA) diversity plays a crucial role in the host-pathogen interaction and affects the rates of disease acquisition and outcome. The identification of HLA class 1 alleles and determining which alleles are associated with tuberculosis (TB) outcomes would help in screening individuals in TB endemic areas for susceptibility to TB and to predict resistance or progression to TB which would inevitably lead to better clinical management of TB. Aims: To be able to determine the HLA class 1 phenotype distribution in a Ugandan TB cohort and to establish the relationship between these phenotypes and active and latent TB. Methods: Blood samples were drawn from 32 HIV negative individuals with active TB and 45 HIV negative individuals with latent MTB infection. DNA was extracted from the blood samples and the DNA samples HLA typed by the polymerase chain reaction-sequence specific primer method. The allelic frequencies were determined by direct count. Results: HLA-A*02, A*01, A*74, A*30, B*15, B*58, C*07, C*03 and C*04 were the dominant phenotypes in this Ugandan cohort. There were differences in the distribution of HLA types between the individuals with active TB and the individuals with LTBI with only HLA-A*03 allele showing a statistically significant difference (p=0.0136). However, after FDR computation the corresponding q-value is above the expected proportion of false discoveries (q-value 0.2176). Key findings: We identified a number of HLA class I alleles in a population from Central Uganda which will enable us to carry out a functional characterization of CD8+ T-cell mediated immune responses to MTB. Our results also suggest that there may be a positive association between the HLA-A*03 allele and TB implying that individuals with the HLA-A*03 allele are at a higher risk of developing active TB

    Human Leukocyte Antigen Class 1 Phenotype Distribution and Analysis in Persons from Central Uganda with Active Tuberculosis and Latent Mycobacterium tuberculosis Infection

    Get PDF
    Background: The Ugandan population is heavily affected by infectious diseases and Human leukocyte antigen (HLA) diversity plays a crucial role in the host-pathogen interaction and affects the rates of disease acquisition and outcome. The identification of HLA class 1 alleles and determining which alleles are associated with tuberculosis (TB) outcomes would help in screening individuals in TB endemic areas for susceptibility to TB and to predict resistance or progression to TB which would inevitably lead to better clinical management of TB. Aims: To be able to determine the HLA class 1 phenotype distribution in a Ugandan TB cohort and to establish the relationship between these phenotypes and active and latent TB. Methods: Blood samples were drawn from 32 HIV negative individuals with active TB and 45 HIV negative individuals with latent MTB infection. DNA was extracted from the blood samples and the DNA samples HLA typed by the polymerase chain reaction-sequence specific primer method. The allelic frequencies were determined by direct count. Results: HLA-A*02, A*01, A*74, A*30, B*15, B*58, C*07, C*03 and C*04 were the dominant phenotypes in this Ugandan cohort. There were differences in the distribution of HLA types between the individuals with active TB and the individuals with LTBI with only HLA-A*03 allele showing a statistically significant difference (p=0.0136). However, after FDR computation the corresponding q-value is above the expected proportion of false discoveries (q-value 0.2176). Key findings: We identified a number of HLA class I alleles in a population from Central Uganda which will enable us to carry out a functional characterization of CD8+ T-cell mediated immune responses to MTB. Our results also suggest that there may be a positive association between the HLA-A*03 allele and TB implying that individuals with the HLA-A*03 allele are at a higher risk of developing active TB

    The effect of interrupted anti-retroviral treatment on the reconstitution of memory and naive T cells during tuberculosis treatment in HIV patients with active pulmonary tuberculosis

    Get PDF
    Background: The reconstitution of cellular immune components contributes to clinical outcome of HIV and Mycobacterium tuberculosis (MTB) infection. Interruption of anti-retroviral therapy (ART) could lead to perturbations in reconstitution of T cells in HIV/ tuberculosis (TB) patients. Objectives: To ascertain the effect of interrupted ART on reconstitution of CD4+ and CD8+ T sub-sets in TB patients.Methods: Participants with HIV (CD4>350 cells/μL) and TB were recruited under a larger phase 3 open label randomised controlled clinical trial. The CD45RO and CD62L markers were measured on CD4+ and CD8+ cells by flow cytometry. Samples were analysed at baseline, 3, 6, 12 months.Results: There was a significant increase of naive CD8+ cells (p = 0.003) and a decrease in effector CD8+ cells (p = 0.004) among participants in ART/TB treatment arm during the first 6 months. Withdrawing ART led to naive CD8+ cells reduction (p=0.02) to values close to baseline. An increase of naive CD8+ cells after 6 months of TB treatment in TB alone treatment arm (p=0.01) was observed. A trend towards increment of naive CD4+ sub sets in either treatment arms was observed.Conclusion: Interrupting ART alters CD8+ but not CD4+ sub-sets in patients with less advanced HIV infection and TB.Keywords: Interrupted anti-retroviral treatment, memory and naive T cells, HIV patients, active pulmonary tuberculosis

    Rhomboid homologs in mycobacteria: insights from phylogeny and genomic analysis

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Rhomboids are ubiquitous proteins with diverse functions in all life kingdoms, and are emerging as important factors in the biology of some pathogenic apicomplexa and <it>Providencia stuartii</it>. Although prokaryotic genomes contain one rhomboid, actinobacteria can have two or more copies whose sequences have not been analyzed for the presence putative rhomboid catalytic signatures. We report detailed phylogenetic and genomic analyses devoted to prokaryotic rhomboids of an important genus, <it>Mycobacterium</it>.</p> <p>Results</p> <p>Many mycobacterial genomes contained two phylogenetically distinct active rhomboids orthologous to Rv0110 (rhomboid protease 1) and Rv1337 (rhomboid protease 2) of <it>Mycobacterium tuberculosis </it>H37Rv, which were acquired independently. There was a genome-wide conservation and organization of the orthologs of Rv1337 arranged in proximity with glutamate racemase (<it>mur1</it>), while the orthologs of Rv0110 appeared evolutionary unstable and were lost in <it>Mycobacterium leprae </it>and the <it>Mycobacterium avium </it>complex. The orthologs of Rv0110 clustered with eukaryotic rhomboids and contained eukaryotic motifs, suggesting a possible common lineage. A novel nonsense mutation at the Trp73 codon split the rhomboid of <it>Mycobacterium avium </it>subsp. <it>Paratuberculosis </it>into two hypothetical proteins (MAP2425c and MAP2426c) that are identical to MAV_1554 of <it>Mycobacterium avium</it>. Mycobacterial rhomboids contain putative rhomboid catalytic signatures, with the protease active site stabilized by Phenylalanine. The topology and transmembrane helices of the Rv0110 orthologs were similar to those of eukaryotic secretase rhomboids, while those of Rv1337 orthologs were unique. Transcription assays indicated that both mycobacterial rhomboids are possibly expressed.</p> <p>Conclusions</p> <p>Mycobacterial rhomboids are active rhomboid proteases with different evolutionary history. The Rv0110 (rhomboid protease 1) orthologs represent prokaryotic rhomboids whose progenitor may be the ancestors of eukaryotic rhomboids. The Rv1337 (rhomboid protease 2) orthologs appear more stable and are conserved nearly in all mycobacteria, possibly alluding to their importance in mycobacteria. MAP2425c and MAP2426c provide the first evidence for a split homologous rhomboid, contrasting whole orthologs of genetically related species. Although valuable insights to the roles of rhomboids are provided, the data herein only lays a foundation for future investigations for the roles of rhomboids in mycobacteria.</p

    The effect of interrupted anti-retroviral treatment on the reconstitution of memory and naive T cells during tuberculosis treatment in HIV patients with active pulmonary tuberculosis.

    Get PDF
    Background: The reconstitution of cellular immune components contributes to clinical outcome of HIV and Mycobacterium tuberculosis (MTB) infection. Interruption of anti-retroviral therapy (ART) could lead to perturbations in reconstitution of T cells in HIV/ tuberculosis (TB) patients. Objectives: To ascertain the effect of interrupted ART on reconstitution of CD4+ and CD8+ T sub-sets in TB patients. Methods: Participants with HIV (CD4&gt;350 cells/\ub5L) and TB were recruited under a larger phase 3 open label randomised controlled clinical trial. The CD45RO and CD62L markers were measured on CD4+ and CD8+ cells by flow cytometry. Samples were analysed at baseline, 3, 6, 12 months. Results: There was a significant increase of naive CD8+ cells (p = 0.003) and a decrease in effector CD8+ cells (p = 0.004) among participants in ART/TB treatment arm during the first 6 months. Withdrawing ART led to naive CD8+ cells reduction (p=0.02) to values close to baseline. An increase of naive CD8+ cells after 6 months of TB treatment in TB alone treatment arm (p=0.01) was observed. A trend towards increment of naive CD4+ sub sets in either treatment arms was observed. Conclusion: Interrupting ART alters CD8+ but not CD4+ sub-sets in patients with less advanced HIV infection and TB

    Tuberculosis Treatment in HIV Infected Ugandans with CD4 Counts >350 Cells/mm3 Reduces Immune Activation with No Effect on HIV Load or CD4 Count

    Get PDF
    Both HIV and TB cause a state of heightened immune activation. Immune activation in HIV is associated with progression to AIDS. Prior studies, focusing on persons with advanced HIV, have shown no decline in markers of cellular activation in response to TB therapy alone.) and pulmonary TB. HIV load, CD4 count, and markers of immune activation (CD38 and HLA-DR on CD4 and CD8 T cells) were measured prior to starting, during, and for 6 months after completion of standard 6 month anti-tuberculosis (TB) therapy in 38 HIV infected Ugandans with smear and culture confirmed pulmonary TB.Expression of CD38, and co-expression of CD38 and HLA-DR, on CD8 cells declined significantly within 3 months of starting standard TB therapy in the absence of anti-retroviral therapy, and remained suppressed for 6 months after completion of therapy. In contrast, HIV load and CD4 count remained unchanged throughout the study period.

    Genetic variation in TLR genes in Ugandan and South African populations and comparison with HapMap data

    Get PDF
    Genetic epidemiological studies of complex diseases often rely on data from the International HapMap Consortium for identification of single nucleotide polymorphisms (SNPs), particularly those that tag haplotypes. However, little is known about the relevance of the African populations used to collect HapMap data for study populations conducted elsewhere in Africa. Toll-like receptor (TLR) genes play a key role in susceptibility to various infectious diseases, including tuberculosis. We conducted full-exon sequencing in samples obtained from Uganda (n = 48) and South Africa (n = 48), in four genes in the TLR pathway: TLR2, TLR4, TLR6, and TIRAP. We identified one novel TIRAP SNP (with minor allele frequency [MAF] 3.2%) and a novel TLR6 SNP (MAF 8%) in the Ugandan population, and a TLR6 SNP that is unique to the South African population (MAF 14%). These SNPs were also not present in the 1000 Genomes data. Genotype and haplotype frequencies and linkage disequilibrium patterns in Uganda and South Africa were similar to African populations in the HapMap datasets. Multidimensional scaling analysis of polymorphisms in all four genes suggested broad overlap of all of the examined African populations. Based on these data, we propose that there is enough similarity among African populations represented in the HapMap database to justify initial SNP selection for genetic epidemiological studies in Uganda and South Africa. We also discovered three novel polymorphisms that appear to be population-specific and would only be detected by sequencing efforts

    Analysis of host responses to Mycobacterium tuberculosis antigens in a multi-site study of subjects with different TB and HIV infection states in sub-Saharan Africa.

    Get PDF
    BACKGROUND: Tuberculosis (TB) remains a global health threat with 9 million new cases and 1.4 million deaths per year. In order to develop a protective vaccine, we need to define the antigens expressed by Mycobacterium tuberculosis (Mtb), which are relevant to protective immunity in high-endemic areas. METHODS: We analysed responses to 23 Mtb antigens in a total of 1247 subjects with different HIV and TB status across 5 geographically diverse sites in Africa (South Africa, The Gambia, Ethiopia, Malawi and Uganda). We used a 7-day whole blood assay followed by IFN-γ ELISA on the supernatants. Antigens included PPD, ESAT-6 and Ag85B (dominant antigens) together with novel resuscitation-promoting factors (rpf), reactivation proteins, latency (Mtb DosR regulon-encoded) antigens, starvation-induced antigens and secreted antigens. RESULTS: There was variation between sites in responses to the antigens, presumably due to underlying genetic and environmental differences. When results from all sites were combined, HIV- subjects with active TB showed significantly lower responses compared to both TST(-) and TST(+) contacts to latency antigens (Rv0569, Rv1733, Rv1735, Rv1737) and the rpf Rv0867; whilst responses to ESAT-6/CFP-10 fusion protein (EC), PPD, Rv2029, TB10.3, and TB10.4 were significantly higher in TST(+) contacts (LTBI) compared to TB and TST(-) contacts fewer differences were seen in subjects with HIV co-infection, with responses to the mitogen PHA significantly lower in subjects with active TB compared to those with LTBI and no difference with any antigen. CONCLUSIONS: Our multi-site study design for testing novel Mtb antigens revealed promising antigens for future vaccine development. The IFN-γ ELISA is a cheap and useful tool for screening potential antigenicity in subjects with different ethnic backgrounds and across a spectrum of TB and HIV infection states. Analysis of cytokines other than IFN-γ is currently on-going to determine correlates of protection, which may be useful for vaccine efficacy trials
    corecore