633 research outputs found

    Type IIB Flows with N=1 Supersymmetry

    Full text link
    We write general and explicit equations which solve the supersymmetry transformations with two arbitrary complex-proportional Weyl spinors on N=1\mathcal{N}=1 supersymmetric type IIB strings backgrounds with all R-R F1F_1, F3F_3, F5F_5 and NS-NS H3H_3 fluxes turned on using SU(3) structures. The equations are generalizations of the ones found for specific relations between the two spinors by Grana, Minasian, Petrini and Tomasiello in [1] and by Butti, Grana, Minasian, Petrini and Zaffaroni in [2]. The general equations allow to study systematically generic type IIB backgrounds with N=1\mathcal{N}=1 supersymmetry. We then explore some specific classes of flows with constant axion, flows with constant dilaton, flows on conformally Calabi-Yau backgrounds, flows with imaginary self-dual 3-form flux, flows with constant ratio of the two spinors, the corresponding equations are written down and some of their features and relations are discussed.Comment: 28 page

    The Shape of Gravity in a Warped Deformed Conifold

    Full text link
    We study the spectrum of the gravitational modes in Minkowski spacetime due to a 6-dimensional warped deformed conifold, i.e., a warped throat, in superstring theory. After identifying the zero mode as the usual 4D graviton, we present the KK spectrum as well as other excitation modes. Gluing the throat to the bulk (a realistic scenario), we see that the graviton has a rather uniform probability distribution everywhere while a KK mode is peaked in the throat, as expected. Due to the suppressed measure of the throat in the wave function normalization, we find that a KK mode's probability in the bulk can be comparable to that of the graviton mode. We also present the tunneling probabilities of a KK mode from the inflationary throat to the bulk and to another throat. Due to resonance effect, the latter may not be suppressed as natively expected. Implication of this property to reheating after brane inflation is discussed

    Nissen fundoplication for the treatment of gastroesophageal reflux disease in patients with Chagas disease without achalasia

    Get PDF
    Universidade Federal de São Paulo (UNIFESP), Escola Paulista de Medicina (EPM) Department of SurgeryState University of São Paulo Department of Surgery and OrthopedicsCatholic University of Campinas Department of SurgeryHospital do Servidor Público Estadual de São Paulo Francisco Morato de Oliveira Department of SurgeryUNIFESP, EPM, Department of SurgerySciEL

    Ontogenetic changes in the olfactory antennules of the shore crab, Hemigrapsus oregonensis, maintain sniffing function during growth

    Get PDF
    Malacostracan crustaceans capture odours using arrays of chemosensory hairs (aesthetascs) on antennules. Lobsters and stomatopods have sparse aesthetascs on long antennules that flick with a rapid downstroke when water flows between the aesthetascs and a slow return stroke when water is trapped within the array (sniffing). Changes in velocity only cause big differences in flow through an array in a critical range of hair size, spacing and speed. Crabs have short antennules bearing dense arrays of flexible aesthetascs that splay apart during downstroke and clump together during return. Can crabs sniff, and when during ontogeny are they big enough to sniff? Antennules of Hemigrapsus oregonensis representing an ontogenetic series from small juveniles to adults were used to design dynamically scaled physical models. Particle image velocimetry quantified fluid flow through each array and showed that even very small crabs capture a new water sample in their arrays during the downstroke and retain that sample during return stroke. Comparison with isometrically scaled antennules suggests that reduction in aesthetasc flexural stiffness during ontogeny, in addition to increase in aesthetasc number and decrease in relative size, maintain sniffing as crabs grow. Sniffing performance of intermediate-sized juveniles was worse than for smaller and larger crabs

    Constraining warm dark matter with cosmic shear power spectra

    Full text link
    We investigate potential constraints from cosmic shear on the dark matter particle mass, assuming all dark matter is made up of light thermal relic particles. Given the theoretical uncertainties involved in making cosmological predictions in such warm dark matter scenarios we use analytical fits to linear warm dark matter power spectra and compare (i) the halo model using a mass function evaluated from these linear power spectra and (ii) an analytical fit to the non-linear evolution of the linear power spectra. We optimistically ignore the competing effect of baryons for this work. We find approach (ii) to be conservative compared to approach (i). We evaluate cosmological constraints using these methods, marginalising over four other cosmological parameters. Using the more conservative method we find that a Euclid-like weak lensing survey together with constraints from the Planck cosmic microwave background mission primary anisotropies could achieve a lower limit on the particle mass of 2.5 keV.Comment: 26 pages, 9 figures, minor changes to match the version accepted for publication in JCA

    Is cosmology consistent?

    Full text link
    We perform a detailed analysis of the latest CMB measurements (including BOOMERaNG, DASI, Maxima and CBI), both alone and jointly with other cosmological data sets involving, e.g., galaxy clustering and the Lyman Alpha Forest. We first address the question of whether the CMB data are internally consistent once calibration and beam uncertainties are taken into account, performing a series of statistical tests. With a few minor caveats, our answer is yes, and we compress all data into a single set of 24 bandpowers with associated covariance matrix and window functions. We then compute joint constraints on the 11 parameters of the ``standard'' adiabatic inflationary cosmological model. Out best fit model passes a series of physical consistency checks and agrees with essentially all currently available cosmological data. In addition to sharp constraints on the cosmic matter budget in good agreement with those of the BOOMERaNG, DASI and Maxima teams, we obtain a heaviest neutrino mass range 0.04-4.2 eV and the sharpest constraints to date on gravity waves which (together with preference for a slight red-tilt) favors ``small-field'' inflation models.Comment: Replaced to match accepted PRD version. 14 pages, 12 figs. Tiny changes due to smaller DASI & Maxima calibration errors. Expanded neutrino and tensor discussion, added refs, typos fixed. Combined CMB data, window and covariance matrix at http://www.hep.upenn.edu/~max/consistent.html or from [email protected]

    Brane World Cosmologies and Statistical Properties of Gravitational Lenses

    Full text link
    Brane world cosmologies seem to provide an alternative explanation for the present accelerated stage of the Universe with no need to invoke either a cosmological constant or an exotic \emph{quintessence} component. In this paper we investigate statistical properties of gravitational lenses for some particular scenarios based on this large scale modification of gravity. We show that a large class of such models are compatible with the current lensing data for values of the matter density parameter Ωm0.94\Omega_{\rm{m}} \leq 0.94 (1σ1\sigma). If one fixes Ωm\Omega_{\rm{m}} to be 0.3\simeq 0.3, as suggested by most of the dynamical estimates of the quantity of matter in the Universe, the predicted number of lensed quasars requires a slightly open universe with a crossover distance between the 4 and 5-dimensional gravities of the order of 1.76Ho11.76 H_o^{-1}.Comment: 6 pages, 3 figures, revte

    Double Inflation in Supergravity and the Large Scale Structure

    Full text link
    The cosmological implication of a double inflation model with hybrid + new inflations in supergravity is studied. The hybrid inflation drives an inflaton for new inflation close to the origin through supergravity effects and new inflation naturally occurs. If the total e-fold number of new inflation is smaller than 60\sim 60, both inflations produce cosmologically relevant density fluctuations. Both cluster abundances and galaxy distributions provide strong constraints on the parameters in the double inflation model assuming Ω0=1\Omega_0=1 standard cold dark matter scenario. The future satellite experiments to measure the angular power spectrum of the cosmic microwave background will make a precise determination of the model parameters possible.Comment: 19 pages (RevTeX file

    Partonic flow and ϕ\phi-meson production in Au+Au collisions at sNN\sqrt{s_{NN}} = 200 GeV

    Get PDF
    We present first measurements of the ϕ\phi-meson elliptic flow (v2(pT)v_{2}(p_{T})) and high statistics pTp_{T} distributions for different centralities from sNN\sqrt{s_{NN}} = 200 GeV Au+Au collisions at RHIC. In minimum bias collisions the v2v_{2} of the ϕ\phi meson is consistent with the trend observed for mesons. The ratio of the yields of the Ω\Omega to those of the ϕ\phi as a function of transverse momentum is consistent with a model based on the recombination of thermal ss quarks up to pT4p_{T}\sim 4 GeV/cc, but disagrees at higher momenta. The nuclear modification factor (RCPR_{CP}) of ϕ\phi follows the trend observed in the KS0K^{0}_{S} mesons rather than in Λ\Lambda baryons, supporting baryon-meson scaling. Since ϕ\phi-mesons are made via coalescence of seemingly thermalized ss quarks in central Au+Au collisions, the observations imply hot and dense matter with partonic collectivity has been formed at RHIC.Comment: 6 pages, 4 figures, submit to PR

    Plasma Wakefield Acceleration with a Modulated Proton Bunch

    Get PDF
    The plasma wakefield amplitudes which could be achieved via the modulation of a long proton bunch are investigated. We find that in the limit of long bunches compared to the plasma wavelength, the strength of the accelerating fields is directly proportional to the number of particles in the drive bunch and inversely proportional to the square of the transverse bunch size. The scaling laws were tested and verified in detailed simulations using parameters of existing proton accelerators, and large electric fields were achieved, reaching 1 GV/m for LHC bunches. Energy gains for test electrons beyond 6 TeV were found in this case.Comment: 9 pages, 7 figure
    corecore