602 research outputs found

    Single Stranded DNA Translocation Through A Nanopore: A Master Equation Approach

    Full text link
    We study voltage driven translocation of a single stranded (ss) DNA through a membrane channel. Our model, based on a master equation (ME) approach, investigates the probability density function (pdf) of the translocation times, and shows that it can be either double or mono-peaked, depending on the system parameters. We show that the most probable translocation time is proportional to the polymer length, and inversely proportional to the first or second power of the voltage, depending on the initial conditions. The model recovers experimental observations on hetro-polymers when using their properties inside the pore, such as stiffness and polymer-pore interaction.Comment: 7 pages submitted to PR

    Stochastic volatility and leverage effect

    Get PDF
    We prove that a wide class of correlated stochastic volatility models exactly measure an empirical fact in which past returns are anticorrelated with future volatilities: the so-called ``leverage effect''. This quantitative measure allows us to fully estimate all parameters involved and it will entail a deeper study on correlated stochastic volatility models with practical applications on option pricing and risk management.Comment: 4 pages, 2 figure

    “That old ocean is a tremendous barrier between us and home”: how young people and their families spoke across distance during the First World War

    Get PDF
    Thousands of miles and countless other barriers — including illiteracy, technological limitations and experiential differences — distanced soldiers serving in the First World War from their families living in the Canadian Prairie Provinces. This thesis draws on hundreds of letters sent between these families to examine the numerous strategies they used to overcome this distance maintain their relationships during the conflict. It examines in depth the work that young people (under the age of twenty-five) performed within their families and draws on methods from social history to uncover their unique experiences.Government of Canada's History Awards, Roger Soderstrom Scholarship, Profiling our Students Travel Award, Queen Elizabeth II Scholarshi

    Anomalous Dynamics of Forced Translocation

    Full text link
    We consider the passage of long polymers of length N through a hole in a membrane. If the process is slow, it is in principle possible to focus on the dynamics of the number of monomers s on one side of the membrane, assuming that the two segments are in equilibrium. The dynamics of s(t) in such a limit would be diffusive, with a mean translocation time scaling as N^2 in the absence of a force, and proportional to N when a force is applied. We demonstrate that the assumption of equilibrium must break down for sufficiently long polymers (more easily when forced), and provide lower bounds for the translocation time by comparison to unimpeded motion of the polymer. These lower bounds exceed the time scales calculated on the basis of equilibrium, and point to anomalous (sub-diffusive) character of translocation dynamics. This is explicitly verified by numerical simulations of the unforced translocation of a self-avoiding polymer. Forced translocation times are shown to strongly depend on the method by which the force is applied. In particular, pulling the polymer by the end leads to much longer times than when a chemical potential difference is applied across the membrane. The bounds in these cases grow as N^2 and N^{1+\nu}, respectively, where \nu is the exponent that relates the scaling of the radius of gyration to N. Our simulations demonstrate that the actual translocation times scale in the same manner as the bounds, although influenced by strong finite size effects which persist even for the longest polymers that we considered (N=512).Comment: 13 pages, RevTeX4, 16 eps figure

    Anomalous Dynamics of Translocation

    Full text link
    We study the dynamics of the passage of a polymer through a membrane pore (translocation), focusing on the scaling properties with the number of monomers NN. The natural coordinate for translocation is the number of monomers on one side of the hole at a given time. Commonly used models which assume Brownian dynamics for this variable predict a mean (unforced) passage time τ\tau that scales as N2N^2, even in the presence of an entropic barrier. However, the time it takes for a free polymer to diffuse a distance of the order of its radius by Rouse dynamics scales with an exponent larger than 2, and this should provide a lower bound to the translocation time. To resolve this discrepancy, we perform numerical simulations with Rouse dynamics for both phantom (in space dimensions d=1d=1 and 2), and self-avoiding (in d=2d=2) chains. The results indicate that for large NN, translocation times scale in the same manner as diffusion times, but with a larger prefactor that depends on the size of the hole. Such scaling implies anomalous dynamics for the translocation process. In particular, the fluctuations in the monomer number at the hole are predicted to be non-diffusive at short times, while the average pulling velocity of the polymer in the presence of a chemical potential difference is predicted to depend on NN.Comment: 9 pages, 9 figures. Submitted to Physical Review

    Random migration and signal integration promote rapid and robust T cell recruitment

    Get PDF
    FWN – Publicaties zonder aanstelling Universiteit Leide

    Theory and simulation of quantum photovoltaic devices based on the non-equilibrium Green's function formalism

    Get PDF
    This article reviews the application of the non-equilibrium Green's function formalism to the simulation of novel photovoltaic devices utilizing quantum confinement effects in low dimensional absorber structures. It covers well-known aspects of the fundamental NEGF theory for a system of interacting electrons, photons and phonons with relevance for the simulation of optoelectronic devices and introduces at the same time new approaches to the theoretical description of the elementary processes of photovoltaic device operation, such as photogeneration via coherent excitonic absorption, phonon-mediated indirect optical transitions or non-radiative recombination via defect states. While the description of the theoretical framework is kept as general as possible, two specific prototypical quantum photovoltaic devices, a single quantum well photodiode and a silicon-oxide based superlattice absorber, are used to illustrated the kind of unique insight that numerical simulations based on the theory are able to provide.Comment: 20 pages, 10 figures; invited review pape

    The impacts of environmental warming on Odonata: a review

    Get PDF
    Climate change brings with it unprecedented rates of increase in environmental temperature, which will have major consequences for the earth's flora and fauna. The Odonata represent a taxon that has many strong links to this abiotic factor due to its tropical evolutionary history and adaptations to temperate climates. Temperature is known to affect odonate physiology including life-history traits such as developmental rate, phenology and seasonal regulation as well as immune function and the production of pigment for thermoregulation. A range of behaviours are likely to be affected which will, in turn, influence other parts of the aquatic ecosystem, primarily through trophic interactions. Temperature may influence changes in geographical distributions, through a shifting of species' fundamental niches, changes in the distribution of suitable habitat and variation in the dispersal ability of species. Finally, such a rapid change in the environment results in a strong selective pressure towards adaptation to cope and the inevitable loss of some populations and, potentially, species. Where data are lacking for odonates, studies on other invertebrate groups will be considered. Finally, directions for research are suggested, particularly laboratory studies that investigate underlying causes of climate-driven macroecological patterns
    corecore