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Lübeck, Germany, 5 Division of Immunology, The Netherlands Cancer Institute, Amsterdam, The Netherlands

Abstract

To fight infections, rare T cells must quickly home to appropriate lymph nodes (LNs), and reliably localize the antigen (Ag)
within them. The first challenge calls for rapid trafficking between LNs, whereas the second may require extensive search
within each LN. Here we combine simulations and experimental data to investigate which features of random T cell
migration within and between LNs allow meeting these two conflicting demands. Our model indicates that integrating
signals from multiple random encounters with Ag-presenting cells permits reliable detection of even low-dose Ag, and
predicts a kinetic feature of cognate T cell arrest in LNs that we confirm using intravital two-photon data. Furthermore, we
obtain the most reliable retention if T cells transit through LNs stochastically, which may explain the long and widely
distributed LN dwell times observed in vivo. Finally, we demonstrate that random migration, both between and within LNs,
allows recruiting the majority of cognate precursors within a few days for various realistic infection scenarios. Thus, the
combination of two-scale stochastic migration and signal integration is an efficient and robust strategy for T cell immune
surveillance.
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Introduction

Pathogens are enormously diverse. They differ in tissue

localization, epitope expression, virulence, and many other factors.

Still, our immune system has to swiftly cope with invading

pathogens to ensure our survival. Intriguing evidence from rather

different infection models like influenza (a local infection of the

respiratory tract), dermal herpes simplex, and listeriosis (a systemic

infection) shows that the immune system manages to activate a

majority of the Ag-specific T cell precursors within just a few days

[1,2]. How can this remarkable efficiency and robustness be

achieved?

A key component of our immune system’s defense strategy is to

keep T cells and other lymphocytes constantly mobile. Because the

T cell repertoire needs to be both specific and diverse, each T cell

recognizes only a few epitopes. Conversely, only very few T cells –

in mice, as little as 20–200 [3–5] – can respond to any given Ag.

To avoid that local pathogen intrusions go unnoticed, T cells

search for Ag proactively by migrating between and within
different organs and tissues. Lymphocyte migration between

tissues has been studied for decades, notably from the 1960s to

the 1980s [6], whereas cell migration within tissue has become

amenable to experiments only recently with the advent of two-

photon imaging [7,8]. Here, we combine classic and recent data

about T cell migration on both scales into a common model. Our

goal is to pinpoint the key aspects of T cell trafficking that help the

immune system respond firmly and rapidly against many different

pathogens.

Several previous modeling studies have addressed individual

aspects of T cell migration in their own right, many of them

spurred by pioneering intravital two-photon experiments that

surprisingly showed lymphocyte migration in LNs to be random-

walk-like [9,10]. These models have provided insights into stop-

and-go T cell motion [11], the relationship between LN transit

time and LN structure [12,13], and the time needed for T cells to

find dendritic cells (DCs) presenting cognate Ag [11,14,15]. Fewer

models have addressed LN migration between organs [16–19],

and only recently have the first models combined between-organ

migration with a simple representation of T cell priming in LNs as

an exponential decay process [20,21]. From two-photon imaging,

we know however that T cell priming in LNs follows a more

complex three-phase timecourse [22,23]. Here we combine

existing hypotheses on T cell priming to build a general kinetic

model of T cell retention in LNs. Fitting our model against

imaging data suggests that T cells in LNs can integrate Ag signals

on a timescale of hours, which might help to detect even low-dose

Ag reliably. Moreover, we combine the priming kinetics with an

explicit model of T cell migration within and between LNs, blood

and spleen to ask how two-scale migration and priming interact

and affect each other. Specifically, we study the impact of signal

integration on the trade-off between fast recirculation and

thorough Ag search [20,21], and ask why in vivo LN transit
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times are so broadly distributed. Finally, we show that the fast T

cell recruitment observed in vivo for various infections [1,2] can

indeed be explained by two-scale stochastic migration.

Results

Signal integration implies a switch-like T cell retention
timecourse

T cell priming in LNs can occur in 3 distinct phases [22,24,25]:

In phase I, the T cell remains motile and establishes serial brief

contacts (lasting a few minutes) with Ag-bearing DCs until, in

phase II, the cell comes to a halt and establishes a stable DC

contact (lasting hours). Ultimately, in phase III, it detaches from

the DC, migrates away, and starts proliferating. T cells upregulate

CD69 during phase I [22], suggesting that the brief contacts are

immunologically productive and allow to integrate Ag signals from

several DCs before committing to retention. Alternatively, given

that Ag dose may vary among DCs, T cells in phase I could simply

fail to find a DC with a high enough dose for retention, thus the

brief contacts might represent unsuccessful retention attempts that

do not contribute to reaching phase II. The latter hypothesis has

been termed probabilistic priming [26]. Despite recent advances

that allow to combine intravital cell tracking with in situ cytometry

[27–29], demonstrating that signal integration occurs in vivo
remains difficult because phase I lasts for several hours, and it is

currently infeasible to track single cells that long in intravital

imaging experiments [30]. We therefore used a mathematical

model to derive testable predictions from the signal integration

and probabilistic priming hypotheses (Figure 1A; Methods), and

tested these predictions against in vivo two-photon data.

Because T cell migration through LN tissue resembles a

persistent random walk [13,31], we considered waiting times

between DC encounters to be exponentially distributed, a

simplification that has been used and validated in a similar sphere

model of T cell random walk in LNs [15]. With probabilistic

priming, the waiting time is interpreted as the time required to find

a new DC, as multiple encounters with the same DC that does not

present enough peptide do not contribute to retention. For each

new contact, the DC presents a sufficient amount of peptide with a

probability that depends on the Ag. For example, at a 1/8

probability, retention occurs on average after 8 unique contacts.

With signal integration, multiple contacts with the same DC (or

different DCs) do contribute to retention, which occurs after an

Ag-dependent number of contacts. For persistent random walks in

a relatively large three-dimensional structure like a LN, one can

expect roughly 2/3rd of all contacts to be unique due to Polya’s

recurrence theorem [32]. This expectation has been confirmed by

a detailed agent-based model of T cell–DC contacts in lymph

nodes [11]. Hence, at the same ‘‘true’’ underlying DC contact

rate, the effective contact rate of probabilistic priming is about 2/

3rd that of signal integration. In the rest of this paper, we only

refer to the effective contact rate for each model.

With both priming models, the time until retention (duration of

phase I) is stochastic due to the waiting times, and the variance of

this duration differs between the models. For instance, when

comparing simulation trajectories of both models at (on average) 8

required contacts and the same effective contact rate, retention

typically starts earlier, but completes later with probabilistic

priming than with signal integration (Figure 1B). In other words,

probabilistic priming implies gradual retention, whereas signal

integration leads to a switch-like timecourse (Figure 1C, blue

lines). This observation is independent of the contact rate, which

equally affects the time scaling of both models. However, at higher

Ag doses, the difference between the 2 priming models is much

smaller (Figure 1C, red lines), because signal integration becomes

less relevant when retention can occur after 1 or a few contacts.

Nevertheless, this basic effect implies that signal integration

completes retention of an entire Ag-specific cell population faster

as well as more reliably than probabilistic priming.

Extracting T cell retention kinetics from two-photon data
The switch-like retention kinetics predicted by signal integration

(Figure 1C) provide a testable prediction that can be confirmed or

rejected by experiments. To determine the retention kinetics of

real T cells, we applied a ‘‘FACS-like’’ motility analysis [27] to a

set of ,22,000 T cell tracks extracted from 38 two-photon videos

from a previous study [25] where naive Ag-specific and control T

cells were imaged at different time points after synchronized entry

into popliteal LNs containing peptide-pulsed DCs (Figure 2A). In

these experiments, varying doses of 2 peptides were used that

differed only in the terminal MHC anchor residue (‘‘M-peptide’’

with high MHC affinity, or ‘‘C-peptide’’ with low affinity [25]).

We estimated the fraction of retained cells in each video by

‘‘gating’’ T cells on the motility coefficient estimated from their

track (Figure 2B; Methods), which confirmed that retention

increased over time for the Ag-specific but not for the control

cells (Figure 2C). At high Ag doses, most T cells were retained

early on (Figure 2C, 10mM M-peptide and 100mM C-peptide).

They should therefore have entered phase II after only a few

contacts, making it difficult to assess whether signal integration

took place (cf. Figure 1C). However, at low Ag doses (Figure 2C,

200pM M-peptide and 10mM C-peptide), retention kinetics were

indeed markedly switch-like, as predicted by our model. Specif-

ically, most cell retention occurred at 4–5 h after cell transfer,

whereas most retention should occur shortly after LN entry with

probabilistic priming. These data suggest that cells integrate

signals in vivo during phase I on a timescale of hours, which

governs the onset of phase II.

Statistical analysis of in vivo retention kinetics
To more precisely quantify the level of support that our data

lends to the signal integration hypothesis, we employed statistical

Author Summary

Each of the immune system’s T lymphocytes recognizes a
highly specific molecular pattern, and only a very few T
cells are capable of detecting any given infection. These
rare cells are at first scattered throughout the body when a
pathogen invades the host. To mount an immune
response, they need to come together within lymphatic
tissue near the infection site, and find cells that carry
molecular fragments of the pathogen. Remarkably, exper-
iments show that the immune system solves this needle-
in-a-haystack problem in just a few days for various
bacterial and viral infections. Aiming to understand how
the immune system achieves this, we built a model that
brings together classic and recent data on T cell migration.
Our model explains how perpetual migration of T cells
between and within lymphatic organs helps to find
invading pathogens swiftly and reliably. Specifically, our
results suggest that T cells can collect signals from
activation-inducing cells for several hours, which allows
for reliable detection of even low-profile infections. Thus,
random T cell trafficking between and within lymphatic
organs robustly protects against a broad range of
pathogens, and comes close to an ‘‘optimal’’ surveillance
strategy.

T Cell Migration and Signal Integration
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model selection starting from a general model that accommodates

both signal integration and probabilistic priming (Methods). The 3

parameters of this general model are as follows. First, T cells

encounter DCs at a fixed rate. Second, there is a peptide dose-

dependent success probability for each contact, with ‘‘success’’

meaning that a cognate signal is transmitted. Third, there is a

dose-dependent number of successful contacts required for T cell

retention. Because the C-peptide has a very short half-life of 2.4 h

on the MHC molecule compared to 6 h for the M-peptide [25],

implying that T cell priming might stop within the 8 h time frame

of interest, we first analyzed the M-peptide data only. Specifically,

we fitted the general model to six M-peptide datasets comprising 3

different Ag doses (Figure 3). Each dataset was recorded in an

independent experiment and consisted of 2 or 3 two-photon videos

imaged at different times upon cell entry. We constrained the

underlying DC encounter rate to be equal across all videos, as the

number of injected DCs was constant. Further details on the fitting

procedure can be found in the Methods. The general model (top

row of Figure 3) gave an acceptable fit and showed good

agreement among different experiments with the same Ag dose.

Next, we created 2 restricted versions of our general model by

disabling signal integration or probabilistic priming, which leads to

the ‘‘pure’’ signal integration and probabilistic priming models

shown in Figure 1C. By comparing the Bayesian information

criterion (BIC) score of each pure model fit (Figure 3, middle and

bottom rows) to the general model fit (Figure 3, top row), we assessed

the relative importance of each priming mechanism in the general

model. The general model fits the data best in terms of BIC,

Figure 1. Signal integration leads to switch-like retention kinetics. (A) Illustration of signal integration and probabilistic priming in a dLN.
With signal integration, the cell remembers each brief DC contact (small circles) on its path (arrows), and retention (double circle) occurs after an Ag-
dependent number of contacts (here, 8). With probabilistic priming, retention occurs upon each contact with an Ag-dependent probability (here, 1/
8), and otherwise, the contact is instantly forgotten. (B) Example simulation trajectories of signal integration and probabilistic priming. In both cases,
the waiting times between DC encounters are exponentially distributed with an average waiting time of 1 h. The additional stochasticity in the
probabilistic priming leads to a wider distribution of retention times. (C) Retention kinetics for signal integration (dashed lines) and probabilistic
priming (solid lines). Like in (B), in silico cells encounter one cognate DC per hour on average. Ag-dependent parameters (left red lines: 2 required
contacts for signal integration and 1/2 success probability for probabilistic priming; right blue lines: 8 contacts, 1/8 success probability) are set such
that the average retention times are 2 h (red) and 8 h (blue).
doi:10.1371/journal.pcbi.1003752.g001

T Cell Migration and Signal Integration
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Figure 2. Extracting T cell retention kinetics from two-photon data. (A) Tracks of cognate (top) and control (bottom) T cells imaged at
different times after simultaneous entry within LNs containing DCs pulsed with 200 pM of M-peptide (see text; ref. [25]). For each video, 25 tracks are
shown aligned on a 565 grid. Each track is colored according to its motility coefficient, revealing a marked motility reduction of the Ag-specific cells.
(B) ‘‘FACS-like’’ approach to quantifying cell retention kinetics. Each dot represents a cell track, and each plot shows all tracks from 1 video. Gating is
used to define retained cells. Numbers indicate the percentage of tracks within each gate. The plots confirm the qualitative observation of (A) that
the motion of Ag-specific cells becomes slower over time (lower motility coefficients). Moreover, persistence decreases (higher turning angles). (C)
Aggregate results of the gating approach shown in (B) applied to 32 two-photon videos from 10 independent experiments [25]. For each Ag

T Cell Migration and Signal Integration
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suggesting that both priming mechanisms are required for

explaining the data. However, the BIC score (misfit) increased by

24.6 when signal integration was disabled (purely probabilistic

priming) but only by 1.41 when probabilistic priming was disabled

(pure signal integration). Applying a common interpretation scale for

BIC [33], this indicates that the evidence for probabilistic priming is

quite weak (DBICv2) whereas the evidence for signal integration is

very strong (DBICw10). Similar results were obtained when fitting

the models to the M-peptide and C-peptide data combined (DBIC
to general model: 0.6 without probabilistic priming and 20.2 without

signal integration). However, the model fit to the C-peptide data was

considerably poorer (not shown), probably due to the rapid peptide

loss which the model does not take into account.

Overall, our statistical analysis lends further support to the

hypothesis that T cells integrate signals from DCs they encounter.

For high Ag doses this is difficult to distinguish from probabilistic

priming because only few interactions lead to T cell retention, yet

at low Ag doses the signal integration is clearly detectable.

Constructing a two-scale model of T cell migration
To study the interplay between priming within LNs and

trafficking between LNs, we designed a stochastic two-scale model

of T cell trafficking between secondary lymphoid organs (SLOs) in

mice (Figure 4), similar to previous models [17,20,21] but

anatomically more explicit. In the new model, cells in the blood

home to T cell zones in LNs and splenic white pulp (Figure 4A).

We represent the T cell areas in the LN paracortex as three-

dimensional spheres (Figure 4B), which in silico cells enter in the

center and then migrate randomly until reaching the surface. The

sphere center represents a high endothelial venule, and the surface

represents cortical sinusoids as well as subcapsular and medullary

sinuses. In contrast, splenic T cell areas (periarteriolar lymphoid

sheaths, or PALS) are cord-like structures around central arterioles

in the white pulp, which T cells are thought to access via so-called

marginal zone bridging channels [34]. In our model we represent

the PALS as a cylinder with small apertures on both sides, with 1

aperture being used for entry and the other for exit (Figure 4C).

configuration (described in main text), tracks from all videos were pooled and then grouped in 1 h bins. Dots and error bars show means and
bootstrapped 95% confidence intervals for the fractions of retained cells. For both peptides, low-dose retention kinetics exhibit a switch pattern
similar to that predicted by signal integration priming (Figure 1C, dashed lines).
doi:10.1371/journal.pcbi.1003752.g002

Figure 3. Quantifying the contribution of signal integration and probabilistic priming to in vivo T cell retention kinetics. Starting with
a general model that accounts for both signal integration and probabilistic priming (top row), we disable each model component separately by
setting its parameter to a constant value. Specifically, fixing the success rate to 100% disables probabilistic priming by enforcing that, during every
contact, a (possibly small) cognate signal is transmitted (middle row). Similarly, fixing the required contacts to 1 disables signal integration (bottom
row). The best fit of each model to retention timecourses obtained from the two-photon data for the M-peptide are shown. In contrast to the coarser
analysis of Figure 2, we now consider each experiment separately (filled circles, open circles, and crosses) and use a higher time resolution (details in
Methods). The size of each data symbol is proportional to the total duration of all tracks it represents. The characteristic switch-like pattern of signal
integration is clearly present in the 200 pM dose (right panels), which the purely probabilistic model fails to fit.
doi:10.1371/journal.pcbi.1003752.g003

T Cell Migration and Signal Integration
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The length of this cylinder is irrelevant for our purpose, because

movement along the cylindrical main axis does not bring the cell

closer to or further away from an exit site.

A quantitatively reasonable parametrization of this model is

necessary to make reliable predictions. Adopting data from a

previous meta-analysis of several migration experiments [17], we

first set the total entry rates from blood to spleen to 1h{1, and

from blood to all LNs combined to 1:5h{1. To determine the

entry rates into and egress rates from the individual LNs, we

analyzed raw data from a recent study [35] where adoptively

transferred cells were counted in LNs at various time points after

injection and LN entry blockade to estimate entry and egress rates.

We found a strong correlation between LN entry rate and LN size

(Figure 5A). However, egress from peripheral LNs was not

significantly faster than egress from the substantially larger

mesenteric LNs (Figure 5B,C), thus there is no evidence for a

relationship between LN size and egress rate. This observation is

consistent with the fact that large LNs are often composed of

several individual lobes or compartments that each have their own

entry and egress structures.

We incorporated these findings by using a single sphere to

represent small LNs, and multiple spheres to represent larger LNs.

These multiple spheres could for example be viewed as different

lobes of an inguinal LN, or as the individual LNs that form the

mesenteric LN. In our model we use 30 LNs, similar to mice [36].

We represent large peripheral LNs, i.e., brachial, axillary, and

inguinal LNs, by 2 spheres each, and the mesenteric LN by 4

spheres. All other LNs (e.g., the popliteal LN) are represented by 1

sphere. We thus have 39 spheres in total. By distributing the T

cells leaving the blood evenly across the spheres, and using the

same sphere diameter for all LNs, we achieve that entry rate is

correlated to LN size but egress rate is not. The transit time

through the spheres is determined by the random walk motility

coefficient and the sphere radius. We set the motility coefficient to

100mm2=min, an estimate that we previously obtained from two-

photon data [13], and set the sphere radius to a value that yields a

physiologic average transit time of 13.5 h [17,35]. Similarly, we set

the geometric parameters of the spleen cylinder (Figure 4D) to

values that lead to an average transit time of 6 h [37]. With these

parameters (Table 1), the model accurately predicts a blood

residence time of 25 min and a realistic distribution of T cells

across SLOs (about 74% in LNs, 23% in spleen) and blood (3%;

Table 2).

Despite the simple structure of our model, its quantitative

predictions (Table 2) suggest that our simulations provide a

reasonable reproduction of the kinetics of T cell migration. We

emphasize that this is largely achieved by setting the parameters to

values reported in previous studies or derived from our own data,

rather than by parameter fitting; sphere diameter and cylinder

aperture angles were set to obtain realistic transit times, but the

values used are anatomically reasonable. We therefore proceed to

use this model to study the interplay between within-LN priming

kinetics and between-LN migration kinetics.

A trade-off between rapid arrival and robust Ag
detection governs LN dwell times

Previous models [20,21] suggested that T cell trafficking

strategies have evolved subject to a trade-off: Frequently recircu-

lating cells arrive more rapidly at relevant SLOs upon infection,

but reliable Ag detection may require long dwell times within

SLOs. It may seem that this conflict could be solved by letting T

cells transit rapidly through non-infected LNs and keeping them

longer in infected LNs. However, classic data shows that after a

brief (,1d) initial ‘‘shutdown’’ period [38,39], T cell egress from

infected LNs is fully restored [40–42], perhaps to avoid that

infected LNs clog up with irrelevant T cells. Hence, the baseline

LN dwell time of T cells has to be long enough to ensure reliable

retention of Ag specific cells, and short enough to ensure rapid

arrival at infected LNs.

Aiming to quantify this trade-off in our model, we combined our

simulations of migration between SLOs and priming within LNs.

For simplicity, we used a hypothetical infection where Ag dose and

quality, as well as DC encounter rates were kept constant over

time, similar to earlier models [21]. Each in silico cell was followed

until successful retention in an Ag-bearing LN (Figure 6A). To

quantify the efficiency of specific LN transit times, we also

performed simulations where we let in silico cells spend fixed times

in each LN instead of searching an exit via random walk

(deterministic LN transit; Figure 6B). In each scenario, efficiency

was assessed by determining the average time taken from Ag

appearance until T cell retention in a LN. In the following, we

refer to this time period as the capture time to emphasize the

difference to the within-LN retention time studied above. For

instance, in simulations of an infection where the Ag is present in

25% of the LN spheres, combined with signal integration priming

at an 8 h phase I (like in Figure 1B), a realistic LN transit time of

12 h balances well between rapid arrival and robust retention, and

leads to an expected capture time of ,4d. In contrast, we obtain

capture times of ,6d for a transit time of 24 h and ,9d for a

transit time of 6 h (Figure 6C). Even though this quantitative

prediction is based on our simplified hypothetical infection, it is

intriguing to observe that the most efficient range of transit times

predicted by our model is similar to physiological transit times

[35].

To generalize these results, we analytically determined how the

capture time depends on the migration and priming parameters

(Methods), and derived equations to calculate the ‘‘optimal’’ LN

transit time that would lead to the fastest detection of a given Ag.

The results show that the disadvantage of overly long transit times

is hardly affected by signal integration (Figure 6C, 24 h and

beyond). However, very short transit times can be extremely

detrimental with signal integration at low Ag dose (Figure 6C, 6 h

and below), as most cells then exit before retention starts. With

probabilistic priming, this effect is less severe as at least some cells

are still retained early on.

In summary, signal integration has different implications for T

cell trafficking between organs than probabilistic priming. Rapid

LN transit in particular appears much less favorable when taking

signal integration into account. Together with the need for T cells

to receive ‘‘survival signals’’ by self-pMHC [21], this may explain

why LN transit times are not shorter in vivo.

Stochastic LN transit benefits robust Ag detection
At first sight, the prediction that LN transit time is important for

rapid Ag detection appears inconsistent with the fact that T cell

dwell times in LNs are widely distributed [35,37]. If rapid capture

depends on proper LN transit timing, then should evolution not

have settled for a more tight control of the LN transit? For

instance, it has been hypothesized that T cells migrate from the

deep paracortex towards egress sites in a directed fashion

[12,43,44]. Such a mechanism could facilitate a more precise

timing of the LN transit. Indeed, if we make all cells transit every

LN in the ‘‘optimal’’ 11.7 h instead of transiting randomly in our

previous simulation (infection in 25% of the LN spheres, 8 h phase

I, signal integration), the capture time slightly decreases from

,5.5d to ,4d – in other words, precisely timed LN transit can

lead to 1.4-fold faster Ag detection in this setting. However,

T Cell Migration and Signal Integration
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Figure 4. Schematic overview of our stochastic two-scale migration model. (A) We consider circulation of Ag-specific T cells in mice
between blood and T cell zones in lymph nodes (LNs) and spleen. The number of LNs is set to 30 [36], and when simulating infections we distinguish
between draining LNs (dLNs) and non-draining LNs (ndLNs). From the blood, T cells enter into LNs and spleen at different rates (Table 1) – e.g., with a
blood-to-LN homing rate of 1:5h{1 , the number of cells entering LNs per hour is 1.5-fold larger than the number of cells in the blood. While dLN
homing rates are typically small (e.g. 5% of the total LN homing rate), they can increase over time. (B) The transit through LNs is modeled as a
random walk through a 3D sphere, where the cell starts in the center and exits back into the blood upon reaching the surface. (C) T cell zones in the
spleen are represented as cylinders where cells enter at an aperture on the left side. In contrast to the LN, cells cannot penetrate the cylinder surface
except through an aperture on the right side, from where they exit. (D) Trajectories of 3 simulated cells, illustrating the stochasticity of the migration
pattern. For instance, in the first trajectory, the cell starts in a LN until, at ,9 h, it recirculates to the blood where it resides for ,30 min. Then it
homes to a LN where it dwells ,22 h, briefly visits the blood at ,31 h, enters the spleen where it stays for ,10 h, and continues circulating. (E) Cell
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adjusting LN transit to optimally detect a given Ag dose comes at a

price with respect to detection at other Ag doses: when performing

simulations where the LN transit time was kept constant but the

Ag parameters were varied, we found that T cells with

deterministic LN transit were not well equipped to deal with low

Ag doses (Figure 6D).

To systematically assess the potential benefits and risks of LN

transit optimization, we considered Ag doses with 2 to 10 required

contacts (leading to a 2–10 h phase I). For each of these settings,

we computed the optimal LN transit time based on our analytical

solution of the model (Methods). As expected, in silico cells that

stay in each visited LN for exactly this optimal time detect the Ag

faster than cells that transit LNs stochastically (e.g., for 8 contacts,

1.38-fold faster). However, testing how fast Ags at other doses

would be detected by deterministic LN transit (e.g., we exposed

cells that transit deterministically in 11.7 h, which is optimal for 8

contacts, to Ag doses requiring 2, 4, 6 and 10 contacts) showed

that the risk of LN transit optimization, in terms of slower

detection of ‘‘unexpected’’ Ag doses, can be orders of magnitude

larger than the best possible gain (Figure 6E).

In reality, Ag abundance, dose, and quality will vary consid-

erably across infections and over time. Therefore, whereas letting

T cells roam freely through LNs provides robust protection against

different infection scenarios, the potential speedup gained for some

pathogens by tightly controlling LN transit seems to be dwarfed by

the large potential risk. These findings offer an explanation for the

broad distribution of in vivo LN residence times [35].

Stochastic migration between organs is an effective
surveillance strategy

For many infections, the immune system is able to recruit

almost all Ag-specific T cells into the immune response within a

few days [1,2], which is similar to the capture times predicted by

our simulations. However, these simulations were based on a

hypothetical infection where Ag was instantly and constantly

available, and the draining area was kept constant. Aiming for a

more realistic infection simulation, we integrated data on spatial

and temporal Ag availability for real infections and tested whether

our model predictions are consistent with the efficient recruitment

observed in vivo.

Because computation of the capture time would require detailed

kinetic information on Ag dose and density as well as DC

frequency and quality within LNs, we focused on the time required

to arrive at a relevant SLO (Figure 7A). Unprimed Ag-specific

cells do not egress from Ag-bearing SLOs in relevant numbers

[40–42]. The capture time should therefore be just a few hours

above the arrival time. First, we simulated arrival of Ag-specific T

cells at the spleen, and found that ,95% of all cells arrive within

the first 3d (Figure 7B, solid line). We compared this prediction to

data for blood-borne Listeria monocytogenes infections. Listeria
enters the spleen almost instantly [45], and T cell priming then

occurs mainly during the first 3–4d [46] (Figure 7B, colored

rectangle). The percentage of naive T cells that are recruited into

immune responses to various different infections has been

estimated using cellular barcoding [1,47]. For intravenously

administered Listeria [1], about 95% of all Ag-specific T cells

took part in the immune response (Figure 7B, gray bar). Given the

arrival speed predicted by our model, a priming time window of

3.5d would suffice to support recruitment of .90% of all Ag-

specific T cells even if the immune response were only formed in

the spleen. Therefore, due to the large throughput of the spleen,

random circulation appears sufficient for a swift response initiation

against blood-borne pathogens such as Listeria.

Searching for Ag is more difficult for local infections, when Ag is

only available in the draining LNs (dLNs) near the site of infection.

Still, when applying the barcoding approach to an influenza

egress kinetics from LN and spleen resulting from the geometrical parameters and the motility coefficient shown in (B,C): The resulting mean transit
times (circles) are 6 h for the spleen and 13.5 h for the LNs, matching both classic [37,65,66] and recent estimates [35]. The transit time distribution
resembles the exponential distribution used in a recent T cell migration model [21], which would yield a straight line on this plot. However, our in
silico cells have to traverse the distance from the entry to the exit locations, and therefore only start exiting after a ‘‘lag time’’ of a few hours, rather
than immediately after they enter.
doi:10.1371/journal.pcbi.1003752.g004

Figure 5. LN size governs T cell entry rate, but not egress rate. (A) Correlation between the number of adoptively transferred cells found in a
LN 2 h after transfer and the LN size. (B) Comparison of the sizes of peripheral (brachial and inguinal) and mesenteric LNs. (C) Comparison of egress
rates between peripheral and mesenteric LNs. A direct comparison between size and egress rate (like in (A) for size and entry rate) is not possible
because each egress rate has to be estimated from several independent experiments whereas each entry rate is estimated from a single experiment.
Data in (A) and (C) are normalized to the average entry and egress rates of CD4 and CD8 T cells, respectively, to account for the intrinsic differences
between these phenotypes [35].
doi:10.1371/journal.pcbi.1003752.g005
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infection in the lung, ,2/3 of all precursors were found to be

recruited into the immune response [1]. We simulated T cell

arrival for different numbers of dLNs, considering T cell homing

from the blood to LNs to be uniformly distributed among 30

equally sized LNs. In this setting (Figure 7C), we found that 6–9

dLNs were required to ensure arrival of 2/3 of all T cells within a

typical 5d priming period of influenza [48]. This prediction is

consistent with the number of LNs that drain the lung in mice – 2–

8 mediastinal, 1 bronchial, and 2–4 deep cervical LNs [36].

Hence, also for local infections, randomly circulating cells can

arrive at appropriate SLOs fast enough to support recruiting a

majority of all Ag-specific T cells within a few days, as long as the

T cell entry rate into dLNs is at least ,20% of the T cell entry rate

into all LNs.

Strikingly, it has been shown that even for an HSV-1 infection

in the footpads with only 2 draining popliteal LNs, ,2/3 of the

Ag-specific T cells disappear from the circulation within 4d [2].

In contrast to the influenza infection, this result can no longer be

explained by stochastic circulation alone – in that case, not even

,20% of in silico cells arrive at 2 dLNs within 4d (Figure 7C).

However, it is known that inflammation-driven vascular growth

can rapidly and massively increase cell flux into dLNs [49,50].

For instance, following HSV-2 infection in mice, influx increases

,9-fold within 4d [50]. When we increase the dLN entry rate in

our model accordingly (Figure 7D), a single dLN accumulates

almost half as many T cells as the spleen within 3–4d, and the

predicted cell disappearance from non-dLNs (Figure 7E) closely

matches experimental estimates for the HSV-1 footpad injection

[2].

In summary, even though our model lacks many features of T

cell migration that might potentially further accelerate Ag

detection and T cell removal, mere inclusion of stochastic

recirculation (ensuring rapid arrival) and signal integration

(ensuring reliable retention) on their own were already sufficient

to explain the efficient T cell recruitment of the listeriosis and

influenza case study. Only for the highly localized HSV-1 infection

it was necessary to take an additional migration feature into

account, namely the increased entry rate into inflamed LNs.

Discussion

It might appear implausible that a vital function like detection of

foreign Ag would depend on aimlessly wandering cells [51]. Yet,

our two-scale modeling of T cell migration showed that the

combination of random walk within tissue with stochastic

migration between tissues is overall a very efficient and robust

strategy to bring Ag-specific T cells to the correct location.

Alteration of this simple migration pattern only seems necessary

for local infections with very few dLNs, in which case a local

increase of the dLN entry rate suffices. In fact, it turned out that

stochastic migration can be superior to tightly controlled

migration: Optimization of the T cell transit through LNs for

most rapid detection of a particular pathogen with specific

replication and Ag presentation kinetics would leave the immune

system vulnerable to other pathogens, whereas stochastic transit

provides far more robust protection at only slightly slower Ag

detection. These results align well with the general observation

that random search strategies can be very effective [52].

Table 1. Parameters of our two-scale migration model.

Parameter Symbol Value References

LN T cell zone radius LLN 697mm

Splenic T cell zone radius LS 90mm

Splenic T cell zone aperture angle aS 250

T cell motility coefficient M 100mm2min{1 [13]

Number of LNs (*) nLN 30 [36]

Entry rate into the ith LN in the absence of Ag rLN(i) 1:5=nLNh{1 [17]

Entry rate into each dLN at day 4.5 rmax 9|rLN(i) [50]

Entry rate into spleen rS 1.0 h{1 [17]

References that support the parameters are given where available. The entry rates into LNs and spleen are not experimental estimates but are adopted from earlier
modeling work [17]. However, these values accurately predict the T cell distribution over the organs at steady state, the blood residence time and the blood-to-lymph
transit time (Table 2). The geometric parameters (T cell zone radius in LN and spleen, aperture radius in spleen) were set to values that are both anatomically reasonable
and give realistic mean dwell times in LNs and spleen. The parameters shown in this table were used for all simulation results reported in this paper unless otherwise
indicated. (*) The axillary, brachial and inguinal LNs are represented by 2 spheres each, while the mesenteric LN is represented by 4 spheres. Thus, in total, we have 39
spheres.
doi:10.1371/journal.pcbi.1003752.t001

Table 2. Predictions of our two-scale migration model.

Prediction Value References

Mean dwell time in LN 13:5h [35,37]

Mean dwell time in spleen 6h [37,65,66,69,70]

Blood residence time 25min [62,63]

T cell ratio blood:spleen:LNs 3 : 23 : 74 [37,71–74]

Blood-to-lymph transit time 21h [6,62]

doi:10.1371/journal.pcbi.1003752.t002
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Figure 6. Implications of signal integration for T cell trafficking. Throughout, a hypothetical infection affecting 25% of the LNs is simulated,
and the cognate DC encounter rate in LNs is 1h{1 . (A) Trajectory of a combined simulation of circulation between organs (Figure 4D) and
probabilistic priming within draining LNs (dLNs) (Figure 1C). Because both migration and priming are stochastic, Ag-specific cells can egress
unprimed from dLNs. (B) Illustration of the difference between the default stochastic LN transit (Figure 4) and simulations of deterministic LN transit,
where the LN transit time is fixed. (C) Capture times of in silico cells with deterministic LN transit and signal integration or probabilistic priming. The
asterisk shows the ‘‘optimal’’ transit time for signal integration at an Ag dose with 8 required contacts, which falls in the in vivo range (gray area). In
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We aimed to base the organ representations in our model

(Figure 4) as much as possible on available information on the

anatomical structure of lymphoid tissue. This is in contrast to other

models of T cell migration [20,21] which instead use an

exponential distribution to model egress. The main difference is

that our models lead to an initial ‘‘lag period’’ during which no

cells exit from the organ, because they need a minimum time to

reach egress structures. Such a lag period might be beneficial

because it prevents premature egress. However, the difference to

exponential egress is not very big (Figure 4E), so our results would

remain similar if we had we used a rate equation instead of explicit

organ representations. Similarly, the precise shape of the

compartments does not play a very big role, e.g. almost identical

results are obtained when one uses a sphere to model the spleen

instead of a cylinder (not shown). However, we found it reassuring

to observe that realistic anatomical structures combined with

realistic T cell motility lead to realistic transit times.

Our migration model does of course not capture the full

complexity of T cell migration in our immune system. For this

reason, we started our validation using data obtained in a carefully

controlled experiment, where many of these complexities are

absent. In real infections, the kinetic signature of signal integration

that we aimed to detect would likely be obscured by other factors.

For instance, even though statistical analysis of T cell migration in

the absence of Ag does not reveal any directed migration, there

could still be some directional migration hidden in the data

[13,53,54]. In the presence of Ag, a weak directional bias has

indeed been observed in LNs where productive interactions

between CD4 T cells and DCs have already been established [55].

Such biased migration may act in conjunction with signal

integration to achieve T cell retention even faster [56]. Moreover,

during real infections, T cells arriving early or late at the same LN

may encounter very different priming parameters. Given these

complexities, we focused on the arrival kinetics when we compared

our simulations to priming data for real infections (Figure 7), and

stopped these simulations after arrival. Therefore, we expect the

benefit of stochastic migration for robust Ag detection to be even

larger in reality than our model predicts (Figure 6), given that T

cells will encounter greater varieties of Ag quantity and quality in
vivo than in our simulations.

T cell retention in LNs is thought to be mediated by

upregulation of CD69, which blocks S1P-driven egress from LNs

[57]. In other words, by upregulating CD69, a T cell ‘‘commits’’ to

staying in the current LN rather than egressing and searching for

Ag elsewhere. In our simulations (Figures 1 and 6), we used the

onset of long-lasting stable contacts in phase II as an indicator of T

cell retention. However, for low Ag dose, CD69 induction can

occur already in phase I [22]. As a consequence, the capture time

for e.g. an Ag with an 8 h phase I might in fact be shorter than

predicted by our model (Figure 6C). Nevertheless, because we

have shown that the implications of our simulations hold within a

large range of within-dLN retention times, this possibility does not

affect our qualitative conclusions. Moreover, it has recently been

shown that in some circumstances, effector responses develop

without phase II [58]. Importantly, this finding does not affect our

conclusion that the onset of phase II in the data we analyzed was

determined by signal integration during phase I.

Our study focused on 2 theories that explain the occurrence of

short contacts at low Ag dose at the T cell level, i.e., signal

integration and probabilistic priming. We found the purely

probabilistic retention model, where cells do not accumulate

signals from multiple interactions [14,26], difficult to reconcile

with our data. However, a further possible explanation for the

transition from phase I to phase II [22,25] could be that this is

dictated by the DCs instead, e.g., as a result of ongoing DC

maturation [59,60]. Detailed information on the progress of these

proposed changes at the DC level over time would be necessary to

allow us to test this third hypothesis. Because such information is

currently lacking, it is not possible to distinguish the DC-driven

retention model from signal integration or probabilistic priming

models. For the data analyzed here, however, it is hard to argue

that differences in DC maturation account for the different

retention kinetics, because the only change between experiments

was the peptide dose, which is not known to affect DC maturation.

Our modeling results for local infections with few dLNs suggest

that increased blood flow to the dLNs might be indispensable to

combat such infections. This increased blood flow, and the

resulting dramatic dLN enlargement, are achieved by remodeling

of the central LN feeding arteriole [50,61]. Still, even the blood

flow through the enlarged arteriole amounts to only a small

percentage of the cardiac blood output, and therefore it may still

seem baffling how such large fractions of all T cells can arrive at

the dLNs so quickly (Figure 7D,E). This finding is more easily

understood when the relation between the speed of blood flow and

the blood residence time is taken into account. In rodents, T cells

remain in the blood for about half an hour [62,63]. Because the

cardiac output of a rodent sums up to the total blood volume

within just a few seconds [64], a T cell in the blood can circulate

many times through the whole body before entering an organ.

Therefore, many T cells that come in close proximity of a given

LN still end up homing elsewhere. Increased blood flow through

the central feeding arteriole thus simply recruits a larger fraction of

those lymphocytes that are passing by anyway, and a major global

redistribution of the cardiac output is not required to achieve an

increased entry rate into dLNs.

Although we focused on mouse data, the basic principles of our

model are applicable to other species as well, including humans:

The basic routes of lymphocyte recirculation described in rodents

are similar to those in many vertebrates. Therefore, our qualitative

conclusions likely generalize to other species. For example, also in

humans with about 550 LNs we expect increased blood flow to

dLNs to be extremely important for localized infections with few

dLNs, and our finding that near-complete T cell retention is

achievable more quickly by signal integration than by probabilistic

priming is independent of the migration between SLOs. However,

in species other than rodents there is still too little data on T cell

migration on both scales to allow for a comprehensive quantitative

analysis as we performed in this paper. In a similar vein, it was

recently shown that LN dwell times differ considerably between

CD8 and CD4 T cells [35]. Future work could address whether

contrast, the optimal transit time for a 2 h phase I is shorter than typical in vivo estimates (Table 1). (D) Capture times for stochastic LN transit with an
average transit time of 11 h and standard deviation of ,7 h compared to a fixed transit time of ,11 h at various Ag concentrations ([Ag]). Stochastic
transit is less sensitive to Ag dose variations, and has a much faster capture time for the lowest Ag concentration at 24 contacts. (E) Predicted
benefits and risks of LN transit optimization. For various Ag doses (required contact numbers below each column), capture times of simulations with
deterministic transit that would be optimal for a certain Ag dose (transit times and required contact numbers shown above column groups) were
compared to the capture times of stochastic transit. Colored bars show fold differences. For example, deterministic LN transit in ,3.7 h detects an Ag
dose with 2 required contacts, for which it is optimal, almost twice as fast as stochastic transit. However, it also detects an Ag dose with 10 required
contacts ,64-fold slower.
doi:10.1371/journal.pcbi.1003752.g006
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these differences might reflect different migration strategies given

that these T cell subsets have very different tasks and are exposed

to Ag in different contexts and interact with each other in a

consequential manner.

In summary, we have presented a model of T cell immune

surveillance as a two-scale stochastic search and compared the

predictions of our model to various experimental findings. Even

for local infections with very few dLNs, random migration

Figure 7. Randomly migrating T cells swiftly arrive at Ag-bearing SLOs. Throughout, dLN numbers refer to LNs represented by a single
sphere. (A) Trajectories illustrating the simulations underlying (B) – (E): randomly circulating cells are followed until reaching an organ of interest
(here, the spleen). (B,C) Arrival of in silico cells (solid lines) at (B) the spleen or (C) different numbers of dLNs during the in vivo priming periods
(shaded areas) following (B) blood-borne Listeria infection [1,46] or (C) local influenza infection [48]. The fraction of in silico cells that arrive during the
priming period is compared to in vivo recruitment levels (gray bars) determined at the peak of the response [1]. (D) Redistribution of in silico cells
from ndLNs, spleen and blood to 1 dLN (blue line) whose entry rate increases 9-fold during the first 4.5d p.i. compared to in vivo T cell numbers per
dLN (circles and error bars) in vaginal HSV-2 infection [50]. T cell numbers are converted to percentages assuming that a mouse harbors 108 T cells [3].
(E) In vivo depletion of Ag-specific T cells from ndLNs following HSV-1 infection with 2 draining popliteal LNs (circles and error bars; ref. [2]) compared
to in silico depletion for 2 dLNs either with (upper line) or without (lower line) increasing entry rates like in (D).
doi:10.1371/journal.pcbi.1003752.g007
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between SLOs combined with a nonspecific increase of the dLN

entry rate enables rare Ag-specific T cells to arrive at dLNs within

a few days. Within dLNs, highly reliable retention of randomly

migrating T cells can be achieved within a few hours even at low

Ag densities owing to the integration of information from multiple

cognate DC contacts. Overall, the two-scale stochastic migration

pattern of T cells appears to be a remarkably efficient and robust

solution to the needle-in-a-haystack problem of recruiting rare T

cells into immune responses.

Methods

Two-photon data analysis
Cells were tracked using Volocity software, and statistical

analysis of the cell tracks was performed using custom-written

software. Tracks shorter than 2 minutes were removed from the

analysis. Motility coefficients of 3D cell tracks were estimated as

M~
6

9nt
|
Xn

i~1

Exi{xn=2E2 , ð1Þ

where t is the duration of the track, xi is the ith of n positions in

the track, and Exi{xn=2E is the distance of the ith position of the

track to its middle position. For tracks of even length we use

xn=2 : ~
xtn=2s

2
z

xqn=2r

2
: ð2Þ

The derivation of Equation 1 is straightforward if one considers

the T-cell migration as a Brownian motion. Note that in this

manner we probably underestimate the motility coefficients of

short T-cell tracks [13]. However, for our analysis this bias is

acceptable because we do not use the actual motility coefficient

values nor do we directly compare motility coefficients of cell

tracks of different length.

To classify cells in a given video as retained or non-retained, we

first analyze the combined set of all control cell tracks from the

same experiment (several videos imaged on the same day). Let

(M1,t1),(M2,t2), . . . denote the motility coefficients and track

durations (in video frames) of these control cells, respectively. We

first compute the weighted median m of the Mi, which is the

median of the sequence in which each Mi is repeated ti times. The

threshold to define a retained cell is then set to q : ~0:2|m. Now

let (M1,t1),(M2,t2), . . . denote motility coefficients and track

durations of a set of Ag-specific cells. We estimate the fraction f of

retained cells as

f ~

X
fti DMivqgX

n
i~1 ti

, ð3Þ

that is, the combined duration of all tracks with a motility

coefficient below q divided by the combined duration of all tracks.

This way of computing f corrects for the fact that non-retained

cells will have on average shorter tracks than retained cells, and

therefore makes it possible to view f as an estimate of the fraction

of retained cells simultaneously visible in the video.

Priming models and fitting to retention data
To obtain the data for the model fitting, we consider 3 time

windows of 20 min per video of 60 min length. Tracks that cross

the boundary of a time window are split accordingly. Moreover,

we consider the time point of each video relative to the time point

of LN entry (,1 h after injection) rather than relative to the time

point of injection, because priming can only start after LN entry.

From videos imaged directly after infection, we estimated that

entry occurred on average 1 h after injection.

Let f denote the fraction of retained cells in a time window

estimated as described above. We correct f for ‘‘background

noise’’ using the formula f ’ : ~(f {fc)=(1{fc) where fc denotes

the fraction of retained cells estimated by applying the above

analysis to all control cells imaged in the same experiment as the

given video.

In the general priming model, which combines signal integra-

tion and probabilistic priming, we consider in silico cells to be

retained after they have established k ‘‘successful’’ cognate

encounters with h being the mean waiting time between such

encounters. Because the waiting times are exponentially distrib-

uted and independent from each other, the time to retention is

Gamma distributed. Hence, the function used to fit the resulting

data is f (t,k,h)~1{P(k,t=h), where P(k,t=h) is the probability

that retention T occurs before time t, i.e.

P(k,t=h)~Pr½Tƒt�~ c(k,t=h)

C(k)
~

ðt=h

t~0

tk{1e{tdtð?
t~0

tk{1e{tdt

: ð4Þ

Here C denotes the usual gamma function and c the lower

incomplete gamma function. Note that our fit cannot identify the

‘‘true’’ DC contact rate ĥh and success probability p, but only the

rate of successful contacts h~ĥh|p: A 2 h waiting time (ĥh~2h)

with a 50% success rate (p~0:5) leads to h~ĥh|p~4h and is

therefore indistinguishable from a 4 h waiting time with a 100%

success rate.

When fitting the general model, we allow both k and h to vary

between independent experiments. For instance, with 6 experi-

ments (Figure 3), the general model has in total 12 parameters.

The purely probabilistic model has 6 parameters (h varies across

experiments, k is fixed to 1) and the pure signal integration model

has 7 parameters (h is constant across experiments, k varies).

To account for heteroschedasticity (the variance of the retention

data near the limits 0% and 100% is lower than near 50%), we fit

the model on a logit scale. Best fits and the corresponding BIC

values are computed using GNU R.

Stochastic model of T cell circulation
Our stochastic model follows single Ag-specific T-cells. Because

their frequency in the pool of all T-cells is extremely low [3,4], Ag-

specific T-cells are considered to circulate independently without

influencing each others’ paths. Therefore, our results are

independent of the number of cells.

In the blood, in silico T-cells keep circulating until they

encounter a random entry site into a secondary lymphoid organ

(SLO). The waiting times for encountering these entry sites are

exponentially distributed with rate rS for the spleen and rate rLN1

for the ith LN sphere (1ƒiƒnLN~39; larger LNs are modelled

by multiple spheres as discussed in the main text). The SLOs are

modeled as three-dimensional objects. Specifically, the LN is

represented as a sphere with radius LLN. The transit of in silico
cells through this sphere starts at the center, which represents a

high endothelial venule in the LN paracortex. Cells then perform a

Brownian motion with motility coefficient M until reaching the

sphere surface, which represents cortical and medullary sinusoids
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[12]. From the sphere surface, the cells move back into the blood.

The spleen is represented as a cylinder of arbitrary length and

radius LS. Cells enter the cylinder at a point on the left border,

which represents immigration from the splenic marginal zone

(Figure 1 in ref. [34]) via a marginal zone bridging channel

(MZBC). They then perform a Brownian motion through the

cylinder with the same motility coefficient as in LNs. However, in

contrast to the LN sphere, a large part of the cylinder boundary is

treated as a reflecting boundary, representing the interfaces to

splenic B-cell areas that ensheathe T-cell areas. Exit is only

possible through an opening on the opposite side of the entry

point, which represents another MZBC and has an aperture angle

of aS. In silico cells reaching that opening are moved back to the

blood.

The geometrical parameters of the cylinder and sphere were set

to the values shown in Table 1. For the spleen, these values were

set empirically based on anatomical considerations: A cylinder

radius LS~90mm and an aperture angle aS~250 imply that a

cross-section through the cylinder (Figure 4C) resembles histolog-

ical PALS sections taken perpendicular to the arteriole (Figure 1 in

ref. [34]). These choices lead to a mean residence time in the

spleen of 6h, matching classical estimates [65,66].

For the LN, the relationship between sphere radius, mean

residence time and motility coeffcient can be analytically

determined. Let R denote the residence time of an in silico cell

with motility coefficient M in a spherical organ of radius L. Then

the expected residence time E R½ � is given by

E R½ �~ L2

6M
:

We use the estimate M~100mm2=min, which is based on two-

photon data [13], for naive T cells. Classic data indicates that in

rodents, naive T cells spend on average 13.5 h in LNs [17].

Therefore, we set LLN~697mm. This value is anatomically

reasonable for the T-cell zone of a medium-sized murine LN.

In addition to the above equation for the expected residence

time, it is also possible to express the entire distribution of cell

residence times in the sphere analytically [67] in terms of the

infinite series

Pr½R~t�~1z2
X?
n~1

exp {
np

L

� �2

Mt

� �
({1)n : ð5Þ

The transit time distributions for spleen and LNs in our model

are shown in Figure 4E.

The model described above is easily transformed into a Monte

Carlo simulation, which allows us to generate individual cell

trajectories (e.g. Figure 4D) to examine the fates of simulated cells.

In these simulations, cells alternate between transiting the blood

and transiting an SLO. We apply the kinetic Monte Carlo method

[68] to the following rate equation, which describes cell movement

from the blood (B) to LNs and spleen according to the rules set out

above:

dB

dt
~{

X
i

rLNi
(t)BzrS(t)B

 !
: ð6Þ

In brief, the kinetic Monte Carlo method works as follows. Let

t0 denote the time at which a cell last entered the blood, and let

%~rS(t0)z
X

i
rLNi

(t0) be the sum of all compartment entry

rates at time t0. Then each organ j (the spleen or 1 of the LNs) is

chosen as the next organ to visit with probability rj(t0)=%. The cell

is then moved to the chosen organ, and simulation time is

increased by Dt~{ ln (u)=%, with 0vuƒ1 uniformly at random.

The residence time of a given cell in a LN is sampled according to

Equation 5, or, in some simulations (Figure 6), is set to a constant.

Transit through the spleen is explicitly simulated as described

above. To avoid ‘‘synchronization’’ between cell trajectories,

Monte Carlo simulations are initialized by putting cells in the

blood and letting them circulate for 1+x weeks, with 0ƒxƒ1
uniformly at random. After initialization, cell trajectories are

recorded and the properties of interest (e.g., the arrival time at the

spleen or at 1 of the dLNs) are investigated.

Analytical solution of the capture time
The probability that a cell is retained when passing through a

dLN can be expressed as Pr½TƒR�, where T is the waiting time to

retention (Equation 4) and R is the LN residence time (either

distributed according to Equation 5 or a constant). We note that

for probabilistic priming, a closed form for Pr½TƒR� exists: Let R

denote the residence time of an in silico cell with motility

coefficient M in a LN sphere with radius L. Let T denote the

retention time for probabilistic priming (k~1) with parameter h.

Then we have

Pr½TƒR�~1{
Lffiffiffiffiffiffiffiffi
Mh
p csch

Lffiffiffiffiffiffiffiffi
Mh
p
� �

, ð7Þ

where csch(x) is the hyperbolic cosecant. This formula is obtained

by integration.

Let us now consider the capture time H (Figure 6A). The

overall efficiency of the two-scale surveillance process can be

quantified by the expectation E H½ � (lower E H½ � means more

efficient surveillance). E H½ � can be determined by extending our

Monte Carlo simulation: When a T cell enters a dLN, the within-

dLN retention time T is drawn at random according to Equation

4. The T cell is considered to be retained if TƒR. However, for

simulations with constant R and an infection with a constant dLN

entry rate and constant priming parameters k,h (Equation 4),

E H½ � can also be determined analytically. Consider an infection

starting at t~0, and an in silico T cell that is not in a dLN at that

time. Let r denote the fraction of dLNs among all LNs, S the

average time spent in the blood and possibly the spleen between 2

consecutive visits of LNs, and S0 the average time at which the cell

first enters a LN. Then the expected capture time is given by

E H½ �~S0z(RzS)
1

rP k,R=hð Þ{1

� �
z

khP kz1,R=hð Þ
P k,R=hð Þ , ð8Þ

with P(s,x) defined as in Equation 4.

Equation 8 can be obtained as follows. Let f (t) denote the

probability density function of the within-dLN retention time, and

let F (t) be the associated cumulative distribution function. Let the

variable T� denote the time at which the cell is retained counting

from the time at which it entered the final dLN, i.e., the dLN in

which the cell eventually is retained. Let U denote the number of

unsuccessful visits to dLNs (that did not lead to retention) before the

successful visit. Let S denote the time spent in blood and/or spleen

between 2 consecutive LN visits, and S0 the time at which the cell

first reaches a LN. Then the overall retention time H (counting

from the start of the infection at t~0) can be written as
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H~S0zU(RzS)zT� :

Importantly, the random variables S0, U , S and T� are

mutually independent. For this reason, the expectation of H
expands as follows:

E H½ �~E S0½ �zE U½ � RzE S½ �ð ÞzE T�½ � :

To shorten notation, we identify the variables S0 and S with

their expectations, i.e. S0 : ~E S0½ � and S~E S½ �. U is a

geometrically distributed variable with parameter rF(R). The

expectation of T� can be obtained by noting that T� is a truncated

version of the within-dLN activation time T , i.e.,

E T�½ �~
ÐR

0
t|f (t)dt

F (R)
:

This leads to

E H½ �~S0z
1

rF (R)
{1

� �
(RzS)z

ÐR

0
t|f (t)dt

F (R)
, ð9Þ

from which one obtains Equation 8 by inserting a Gamma

distribution for f and its integral for F .
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