research

Single Stranded DNA Translocation Through A Nanopore: A Master Equation Approach

Abstract

We study voltage driven translocation of a single stranded (ss) DNA through a membrane channel. Our model, based on a master equation (ME) approach, investigates the probability density function (pdf) of the translocation times, and shows that it can be either double or mono-peaked, depending on the system parameters. We show that the most probable translocation time is proportional to the polymer length, and inversely proportional to the first or second power of the voltage, depending on the initial conditions. The model recovers experimental observations on hetro-polymers when using their properties inside the pore, such as stiffness and polymer-pore interaction.Comment: 7 pages submitted to PR

    Similar works

    Full text

    thumbnail-image

    Available Versions

    Last time updated on 03/01/2020