6 research outputs found

    Phylogenetic Patterns of Human Coxsackievirus B5 Arise from Population Dynamics between Two Genogroups and Reveal Evolutionary Factors of Molecular Adaptation and Transmission

    No full text
    The aim of this study was to gain insights into the tempo and mode of the evolutionary processes that sustain genetic diversity in coxsackievirus B5 (CVB5) and into the interplay with virus transmission. We estimated phylodynamic patterns with a large sample of virus strains collected in Europe by Bayesian statistical methods, reconstructed the ancestral states of genealogical nodes, and tested for selection. The genealogies estimated with the structural one-dimensional gene encoding the VP1 protein and nonstructural 3CD locus allowed the precise description of lineages over time and cocirculating virus populations within the two CVB5 clades, genogroups A and B. Strong negative selection shaped the evolution of both loci, but compelling phylogenetic data suggested that immune selection pressure resulted in the emergence of the two genogroups with opposed evolutionary pathways. The genogroups also differed in the temporal occurrence of the amino acid changes. The virus strains of genogroup A were characterized by sequential acquisition of nonsynonymous changes in residues exposed at the virus 5-fold axis. The genogroup B viruses were marked by selection of three changes in a different domain (VP1 C terminus) during its early emergence. These external changes resulted in a selective sweep, which was followed by an evolutionary stasis that is still ongoing after 50 years. The inferred population history of CVB5 showed an alternation of the prevailing genogroup during meningitis epidemics across Europe and is interpreted to be a consequence of partial cross-immunity

    Factors Associated with Virological Response to Etravirine in Nonnucleoside Reverse Transcriptase Inhibitor-Experienced HIV-1-Infected Patients▿

    No full text
    To identify factors associated with virological response (VR) to an etravirine (ETR)-based regimen, 243 patients previously treated with nonnucleoside reverse transcriptase inhibitors (NNRTIs) were studied. The impact of baseline HIV-1 RNA, CD4 cell count, past NNRTIs used, 57 NNRTI resistance mutations, genotypic sensitivity score (GSS) for nucleoside reverse transcriptase inhibitors (NRTIs) and protease inhibitors (PIs), and the number of new drugs used with ETR for the first time on the VR to an ETR regimen were investigated. Among the 243 patients, the median baseline HIV-1 RNA level was 4.4 log10 copies/ml (interquartile range [IQR], 3.7 to 4.9) and the median CD4 count was 175 cells/mm3 (IQR, 69 to 312). Patients had been previously exposed to a median of 6 NRTIs, 1, NNRTI, and 5 PIs. Overall, 82% of patients achieved a VR at month 2, as defined by a decrease of at least 1.5 log10 copies/ml and/or HIV-1 RNA level of <50 copies/ml. No difference in VR was observed between patients receiving or not a boosted PI in combination with ETR. Factors independently associated with a better VR to ETR were the number of drugs (among enfuvirtide, darunavir, or raltegravir) used for the first time in combination with ETR and the presence of the K103N mutation at baseline. Mutations Y181V and E138A were independently associated with poor VR, whereas no effect of the Y181C on VR was observed. In conclusion, ETR was associated with high response rates in NNRTI-experienced patients in combination with other active drugs regardless of the therapeutic class used

    Emerging resistance mutations in PI-naive patients failing an atazanavir-based regimen (ANRS multicentre observational study)

    Get PDF
    International audienc

    Emerging resistance mutations in PI-naive patients failing an atazanavir-based regimen (ANRS multicentre observational study)

    No full text
    corecore