848 research outputs found

    Parametric infrared tunable laser system

    Get PDF
    A parametric tunable infrared laser system was built to serve as transmitter for the remote detection and density measurement of pollutant, poisonous, or trace gases in the atmosphere. The system operates with a YAG:Nd laser oscillator amplifier chain which pumps a parametric tunable frequency converter. The completed system produced pulse energies of up to 30 mJ. The output is tunable from 1.5 to 3.6 micrometers at linewidths of 0.2-0.5 /cm (FWHM), although the limits of the tuning range and the narrower line crystals presently in the parametric converter by samples of the higher quality already demonstrated is expected to improve the system performance further

    Military Operations Research Society (MORS) Oral History Project Interview of Dr. Jacqueline R. Henningsen, FS

    Get PDF
    Interviews with Dr. Jacqueline R. Henningsen, FS, took place on February 7, 2006, February 10, 2006, March 1, 2006, May 12, 2006, and September 10, 2016. Mr. Jim Bexfield, FS, Bexfield et al. Military Operations Research Society (MORS) Oral History Project Interview of Dr. Jacqueline R. Henningsen, FS Colonel Roxann Oyler, Mr. Roy Reiss, FS, and Dr. Bob Sheldon, FS, interviewers

    Modelling concrete and abstract concepts using brain-constrained deep neural networks

    Get PDF
    A neurobiologically constrained deep neural network mimicking cortical areas relevant for sensorimotor, linguistic and conceptual processing was used to investigate the putative biological mechanisms underlying conceptual category formation and semantic feature extraction. Networks were trained to learn neural patterns representing specific objects and actions relevant to semantically ‘ground’ concrete and abstract concepts. Grounding sets consisted of three grounding patterns with neurons representing specific perceptual or action-related features; neurons were either unique to one pattern or shared between patterns of the same set. Concrete categories were modelled as pattern triplets overlapping in their ‘shared neurons’, thus implementing semantic feature sharing of all instances of a category. In contrast, abstract concepts had partially shared feature neurons common to only pairs of category instances, thus, exhibiting family resemblance, but lacking full feature overlap. Stimulation with concrete and abstract conceptual patterns and biologically realistic unsupervised learning caused formation of strongly connected cell assemblies (CAs) specific to individual grounding patterns, whose neurons were spread out across all areas of the deep network. After learning, the shared neurons of the instances of concrete concepts were more prominent in central areas when compared with peripheral sensorimotor ones, whereas for abstract concepts the converse pattern of results was observed, with central areas exhibiting relatively fewer neurons shared between pairs of category members. We interpret these results in light of the current knowledge about the relative difficulty children show when learning abstract words. Implications for future neurocomputational modelling experiments as well as neurobiological theories of semantic representation are discussed

    Biological constraints on neural network models of cognitive function

    Get PDF
    Neural network models are potential tools for improving our understanding of complex brain functions. To address this goal, these models need to be neurobiologically realistic. However, although neural networks have advanced dramatically in recent years and even achieve human-like performance on complex perceptual and cognitive tasks, their similarity to aspects of brain anatomy and physiology is imperfect. Here, we discuss different types of neural models, including localist, auto-associative and hetero-associative, deep and whole-brain networks, and identify aspects under which their biological plausibility can be improved. These aspects range from the choice of model neurons and of mechanisms of synaptic plasticity and learning, to implementation of inhibition and control, along with neuroanatomical properties including area structure and local and long-range connectivity. We highlight recent advances in developing biologically grounded cognitive theories and in mechanistically explaining, based on these brain-constrained neural models, hitherto unaddressed issues regarding the nature, localization and ontogenetic and phylogenetic development of higher brain functions. In closing, we point to possible future clinical applications of brain-constrained modelling

    An Ovarian Bioreactor for In Vitro Culture of the Whole Bovine Ovary: a Preliminary Report

    Get PDF
    Background: Improved cancer therapeutics and enhanced cancer survivorship have emphasized the severe long-term side effects of chemotherapy. Specifically, studies have linked many chemotherapy agents with primary ovarian insufficiency, although an exact insult model has not yet been determined. To investigate and ultimately solve this problem, a novel device for extended study of mammalian ovaries in vitro was developed. Methods: A bioreactor was fabricated for bovine ovarian culture that provides intravascular delivery of media to the ovary through isolation and cannulation of a main ovarian artery branch. Whole ovaries were cultured in vitro using three methods: (1) continuously supplied fresh culture media, (2) recirculated culture media, or (3) continuously supplied fresh culture media supplemented with 500 nM doxorubicin for 24 or 48 h. TUNEL assay was used to assess apoptotic cell percentages in the three groups as compared to uncultured baseline ovaries. Results: The ovary culture method was shown to maintain cell viability by effectively delivering nutrient-enriched pH-balanced media at a constant flow rate. Lower apoptosis observed in ovaries cultured in continuously supplied fresh culture media illustrates that this culture device and method are the first to sustain whole bovine ovary viability for 48 h. Meanwhile, the increase in the percentage of cell apoptosis with doxorubicin treatment indicates that the device can provide an alternative model for testing chemotherapy and chemoprotection treatments to prevent primary ovarian insufficiency in cancer patients. Conclusions: An ovarian bioreactor with consistent culture media flow through an ovarian vasculature-assisted approach maintains short-term whole bovine ovary viability

    An Ovarian Bioreactor for In Vitro Culture of the Whole Bovine Ovary: a Preliminary Report

    Get PDF
    Background: Improved cancer therapeutics and enhanced cancer survivorship have emphasized the severe long-term side effects of chemotherapy. Specifically, studies have linked many chemotherapy agents with primary ovarian insufficiency, although an exact insult model has not yet been determined. To investigate and ultimately solve this problem, a novel device for extended study of mammalian ovaries in vitro was developed. Methods: A bioreactor was fabricated for bovine ovarian culture that provides intravascular delivery of media to the ovary through isolation and cannulation of a main ovarian artery branch. Whole ovaries were cultured in vitro using three methods: (1) continuously supplied fresh culture media, (2) recirculated culture media, or (3) continuously supplied fresh culture media supplemented with 500 nM doxorubicin for 24 or 48 h. TUNEL assay was used to assess apoptotic cell percentages in the three groups as compared to uncultured baseline ovaries. Results: The ovary culture method was shown to maintain cell viability by effectively delivering nutrient-enriched pH-balanced media at a constant flow rate. Lower apoptosis observed in ovaries cultured in continuously supplied fresh culture media illustrates that this culture device and method are the first to sustain whole bovine ovary viability for 48 h. Meanwhile, the increase in the percentage of cell apoptosis with doxorubicin treatment indicates that the device can provide an alternative model for testing chemotherapy and chemoprotection treatments to prevent primary ovarian insufficiency in cancer patients. Conclusions: An ovarian bioreactor with consistent culture media flow through an ovarian vasculature-assisted approach maintains short-term whole bovine ovary viability

    Parental internalizing symptoms as predictors of anxiety symptoms in clinic-referred children

    Get PDF
    Background: Mothers’ and fathers’ internalizing symptoms may influence children’s anxiety symptoms differently. Objective: To explore the relationship between parental internalizing symptoms and children’s anxiety symptoms in a clinical sample of children with anxiety disorders. Method: The sample was recruited through community mental health clinics for a randomized controlled anxiety treatment trial. At pre-intervention, children (n = 182), mothers (n = 165), and fathers (n = 72) reported children’s anxiety symptoms. Mothers and fathers also reported their own internalizing symptoms. The children were aged 8 to 15 years (Mage = 11.5 years, SD = 2.1, 52.2% girls) and all had a diagnosis of separation anxiety, social phobia, and/or generalized anxiety disorder. We examined parental internalizing symptoms as predictors of child anxiety symptoms in multiple regression models. Results: Both mother and father rated internalizing symptoms predicted children’s self-rated anxiety levels (adj. R2 = 22.0%). Mother-rated internalizing symptoms predicted mother-rated anxiety symptoms in children (adj. R2 = 7.0%). Father-rated internalizing symptoms did not predict father-rated anxiety in children. Conclusions: Clinicians should incorporate parental level of internalizing symptoms in their case conceptualizations

    The derivation of the formyl-group oxygen of chlorophyll b in higher plants from molecular oxygen.

    Get PDF
    The mechanism of formation of the formyl group of chlorophyll b has long been obscure but, in this paper, the origin of the 7-formyl-group oxygen of chlorophyll b in higher plants was determined by greening etiolated maize leaves, excised from dark-grown plants, by illumination under white light in the presence of either H218O or 18O2 and examining the newly synthesized chlorophylls by mass spectroscopy. To minimize the possible loss of 18O label from the 7-formyl substituent by reversible formation of chlorophyll b-71-gem-diol (hydrate) with unlabelled water in the cell, the formyl group was reduced to a hydroxymethyl group during extraction with methanol containing NaBH4: chlorophyll a remained unchanged during this rapid reductive extraction process. Mass spectra of chlorophyll a and [7-hydroxymethyl]-chlorophyll b extracted from leaves greened in the presence of either H218O or 18O2 revealed that 18O was incorporated only from molecular oxygen but into both chlorophylls: the mass spectra were consistent with molecular oxygen providing an oxygen atom not only for incorporation into the 7-formyl group of chlorophyll b but also for the well-documented incorporation into the 131-oxo group of both chlorophylls a and b [see Walker, C. J., Mansfield, K. E., Smith, K. M. & Castelfranco, P. A. (1989) Biochem. J. 257, 599–602]. The incorporation of isotope led to as much as 77% enrichment of the 131-oxo group of chlorophyll a: assuming identical incorporation into the 131 oxygen of chlorophyll b, then enrichment of the 7-formyl oxygen was as much as 93%. Isotope dilution by re-incorporation of photosynthetically produced oxygen from unlabelled water was negligible as shown by a greening experiment in the presence of 3-(3,4-dichlorophenyl)-1,1-dimethylurea. The high enrichment using 18O2, and the absence of labelling by H218O, unequivocally demonstrates that molecular oxygen is the sole precursor of the 7-formyl oxygen of chlorophyll b in higher plants and strongly suggests a single pathway for the formation of the chlorophyll b formyl group involving the participation of an oxygenase-type enzyme
    • …
    corecore