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Abstract | Neural network models are potential tools for improving our understanding of 
complex brain functions. To address this goal, these models need to be neurobiologically 
realistic. However, although neural networks have advanced dramatically in recent years and 
even achieve human-like performance on complex perceptual and cognitive tasks, their 
similarity to aspects of brain anatomy and physiology is imperfect. Here, we discuss different 
types of neural models, including localist, auto-associative and hetero-associative, deep and 
whole-brain networks, and identify aspects under which their biological plausibility can be 
improved. These aspects range from the choice of model neurons and of mechanisms of 
synaptic plasticity and learning, to implementation of inhibition and control, along with 
neuroanatomical properties including area structure and local and long-range connectivity. 
We highlight recent advances in developing biologically grounded cognitive theories and in 
mechanistically explaining, based on these brain-constrained neural models, hitherto 
unaddressed issues regarding the nature, localization and ontogenetic and phylogenetic 
development of higher brain functions. In closing, we point to possible future clinical 
applications of brain-constrained modelling. 
 
 
 
 
Introduction 
Cognition calls for mechanistic explanation. The superb and specific cognitive capacities of 
humans and higher mammals may depend on specific structural and functional features of 
their brains. If so, these neurobiological features must play a decisive role in explanations of 
cognitive capacities. Despite substantial progress in understanding brain function in general, 
explaining how structural and functional features of neural tissue bring about cognition, 
language and thought has remained a challenge. We propose that such explanation can only 
be achieved if neural networks for modelling cognition incorporate a broad range of features 
that make them similar at different levels to real neurobiological networks. This article will 
discuss recent attempts to progress towards this goal and highlight seven brain constraints 
that may help to make neural networks more neural (Fig. 1). We discuss established types of 
cognitive neural models (Fig. 2) and give examples of neural simulations that integrate several 
brain constraints in novel ways. These networks offer perspectives on modelling 
neurocognitive mechanisms in and across multiple brain areas using huge numbers of realistic 
neurons and their local and global interactions through short- and long-range neuroanatomical 
connections, and hence provide opportunities for better understanding the mechanisms of 
cognition, including perception, categorization, attention, memory, language and semantic-
conceptual processing. 
 

Neural models of cognition 
Localist networks. A standard way to present theories about cognition has been in the form 
of abstract box-and-arrow diagrams, with each ‘box’ indicating a module specialized for one 
cognitive sub-process (for example, sound processing) and arrows indicating information 
transmission between modules. These models were usually based on behavioural experiments 
involving healthy participants — for example, in tasks processing differences between speech 
and other sounds, which motivated the postulate of different modules for speech and non-
linguistic acoustic stimuli1,2. Although some of these models were refined in light of studies in 
individuals with neurological impairments3,4, they were generally formulated without explicit 
reference to neuronal circuits, despite researchers’ demands for biological foundations of 
models of mental processing5-7.  
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An important step towards addressing the neural substrate was taken by so-called localist 
models of cognition and language8-12, which filled the boxes of modular models with single 
artificial ‘neurons’ thought to locally represent cognitive elements13 such as perceptual features 
and percepts, phonemes, word forms, meaning features, concepts and so on (Fig. 1a). The 
1:1 relationship between the artificial neuron-like computational–algorithmic implementations 
and the entities postulated by cognitive theories made it easy to connect the two types of 
models. However, the notion that individual neurons each carry major cognitive functions is 
controversial today and difficult to reconcile with evidence from neuroscience research14,15. 
This is not to dispute the great specificity of some neurons’ responses16, but rather to highlight 
the now dominant view that even these very specific cells “do not act in isolation but are part 
of cell assemblies representing familiar concepts”, objects or other entities17,18. A further 
limitation of the localist models was that they did not systematically address the mechanisms 
underlying the formation of new representations and their connections. 
 
Auto-associative networks. Neuroanatomical observations suggest that the cortex is 
characterized by ample intrinsic and recurrent connectivity between its neurons and, therefore, 
it can be seen as an associative memory19,20. This position inspired a family of artificial neural 
networks, called ‘auto-associative networks’ or ‘attractor networks’21-32.  
Auto-associative network models implement neurons with connections between their neuron 
members, so that each neuron interlinks with several or even all of the other neurons included 
in the set. This contrasts with the hetero-associative networks discussed below, where 
connections run between sub-populations of network neurons without any connections within 
each neuron pool. To simulate the effect of learning in auto-associative networks, so-called 
learning rules are included that change the connection weights between neurons as a 
consequence of their prior activity. For example, biologically founded unsupervised Hebbian 
learning, which strengthens connections between co-activated neurons5, is frequently applied 
and leads to the formation of strongly connected cell assemblies within a weakly connected 
auto-associative neuron pool (Fig. 2b). These cell assemblies can function as distributed 
network correlates or representations of perceptual, cognitive or ‘mixed’ context-dependent 
perceptual–cognitive states6,30,32-34. Therefore, the observations that cortical neurons work 
together in groups and that representations are distributed across such groups 14,18 can both 
be accommodated by this artificial network type, along with learning mechanisms, thus 
overcoming major shortcomings of localist networks.  
Additional cognitively relevant features of auto-associative networks include the ability of a cell 
assembly to fully activate after only partial stimulation — a possible mechanism for Gestalt 
completion; that is, the recognition of an object (such as a cat) given only partial input (tail and 
paws). The mechanism is illustrated in Fig. 2b, where stimulation of neurons α and β is 
sufficient for activating the cell assembly formed by neurons α-to-γ.  
Furthermore, auto-associative networks integrate the established observations that: cortical 
neural codes can be sparse (that is, only a small fraction of available neurons respond to a 
given (complex) stimulus)15,18,22,35,36; and that some (other) neurons respond to elementary and 
frequently occurring features of several stimuli (thus behaving in a less-sparse manner)37. The 
reason for this lies in cell assembly overlap; that is, the possibility that two or more such circuits 
can share neurons while remaining functionally separate. This is illustrated in Fig. 2b, by the 
‘overlap neuron’ of cell assemblies α-to-γ and γ-to-ε.  
Auto-associative networks can model a wide spectrum of cognitive processes, ranging from 
object, word and concept recognition to navigation, syntax processing, memory, planning and 
decision making21,22,27,28,30,32,36,38-40. Some models use several interlinked auto-associative 
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network components to model the interaction between multiple cortical areas in cognitive 
processing36,41-50. Furthermore, auto-associative components can be included in more complex 
networks, for example the deep recurrent networks discussed below. 
 
Hetero-associative networks. Hetero-associative or feedforward networks include two or 
more neuron pools or ‘layers’ with connections between, but not (as in auto-associative 
networks) within, layers 51,52, and offer a different pathway towards distributed representations 
and learning. These models consist of different neuron pools connected in sequence, a 
connection scheme inspired by neurobiological structures; for example, by next-neighbour 
feedforward connections between layers of the retina or between cortical areas53.  
A frequently used class of models called multiple-layer perceptrons, which are frequently used 
in parallel-distributed processing, includes three neuron layers, with one layer receiving the 
input, one generating the output and one ‘hidden’ layer in between (Fig. 2c)52. In such 
networks, representations of cognitive entities are dense and nonsparse; that is, they are 
distributed across all neurons of the hidden layer, such that an activation vector across the 
entire layer is the network correlate of an object, word, meaning or thought54. Note that the 
dense and ‘fully distributed’ nature of these representations contrasts with the sparse (but also 
distributed) representations characterizing many auto-associative networks.  
To implement a form of learning in these networks, input and output ‘teacher’ signals are fed 
to the input and output layers, respectively52, and synaptic weights are modulated to make the 
network learn the relationships between inputs and teacher outputs. To adjust the synaptic 
weights, supervised learning algorithms are applied that adjust weights according to the error 
gradient that is calculated backwards from the output layer to the synapse in question. Initially, 
an algorithm called ‘error back-propagation’55 was applied; however, more recently, a range of 
learning rules based on error gradients across the network have become available, thus 
allowing for different variants of ‘gradient-dependent’ learning56. 
In order to implement memory processes, one additional layer was added to the three-layer 
architecture and connected reciprocally to the ‘hidden’ layer57; this ‘simple recurrent network’ 
architecture allows for reverberant activity. Similar to auto-associative networks, feedforward 
networks including three or four layers have successfully addressed a broad range of cognitive 
functions58-60. 
 
Deep neural networks. To further enhance their computational power, more layers were 
added to hetero-associative networks, thus resulting in deep neural networks (DNNs; Fig. 
2d)56,61-64. A neurobiological motivation for increasing the number of layers from three to six 
and more comes from the neuroanatomical structure of the ventral occipitotemporal stream for 
object processing, in which neuroanatomical connections lead from the primary visual cortex 
(V1) to adjacent areas and, via multiple levels, to anterior temporal areas 65.  
DNNs have been varied in several important ways. For example, convolutional DNNs include 
topographic projections between (some of) their layers to facilitate the joint processing of 
adjacent inputs, and recurrent DNNs include reciprocal connections between layers and/or 
recurrent links within layers that make it possible to maintain information over time. These 
modifications have produced extremely powerful devices that have reached near-human 
performance levels in several cognitive domains, including, for example, object 
classification66,67 and speech recognition68-70. DNNs have been proposed to perform an over-
parameterized blind process of directly fitting complex data sets with immanent regularization, 
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and to allow for generalization based on local interpolation, thus taking on functions previously 
attributed to discrete rules71.  
Despite their broad success, specific limitations of DNNs have recently been pointed out. They 
sometimes show inappropriate generalization behaviour72-75, such as classifying, with high 
confidence, images completely unrecognizable to humans as instances of specific objects73. 
Similarly, an extensive body of research on so-called ‘adversarial examples’ has shown that 
minimal perturbations to images can, despite being imperceptible to humans, nonetheless 
cause gross misclassifications by DNNs72,76. It remains to be investigated whether these partial 
failures point to relevant differences between DNN-immanent and brain-internal perception 
mechanisms that can be remediated by algorithmic improvements, or rather reflect limitations 
of the stimulus sets applied during training, which differ from the realistic stimuli available to 
living beings during their ontogeny. A recent study found that introducing a hidden layer that 
better matches primate V1 improved robustness to adversarial examples in a neural network 
for image classification, suggesting that a higher degree of biological realism might be key77. 
Today, there are various neural network architectures that use different types of processing 
components, coding and learning rules. Supervised and unsupervised learning, sparse and 
dense distributed coding, and hetero-associative and auto-associative network components 
co-exist across approaches, and some models even mix these features — for example, by 
integrating both hetero-associative and auto-associative layers, as in the case of deep-
recurrent and reservoir-computing networks48,69,78,79. The choice of network features is driven 
by processing efficiency, including error minimization, learning speed, effective use of 
computing resources and so on. Neurobiological plausibility is frequently used as a source of 
inspiration, as mentioned, but artificial neural networks are usually not designed to structurally 
and functionally resemble specific parts of the brain. 
 
Whole-brain networks. The connections between the layers of neural networks are typically 
simple, with neighbouring areas being linked; however, this differs from the connectivity 
structure of the cortex, in which numerous areas are connected in intricate ways. 
Approximating the complex subdivision of brains into areas and nuclei, and implementing the 
neuroanatomical connectivity between these components, is a main goal of ‘whole-brain’ 
modelling. Rather than modelling all parts of the brain, most ‘whole-brain’ models focus on 
cortical areas and forebrain nuclei, or selections thereof. 
Neuroanatomists have mapped the areal structure of the cortex and brain at coarse and fine-
grained levels80-82. Information about structural brain connectivity is available from invasive 
tracer studies in animals83,84, which have revealed fibre tracts and their directionality, and from 
non-invasive brain-imaging applicable in both animals and humans. The latter use diffusion 
tensor or diffusion weighted imaging (DTI/DWI) along with deterministic or probabilistic 
tractography 85-88. By parcellating the cortex into a set of areas and translating its structural 
connectivity into between-area links, a whole-brain or multiple-area network model can be 
obtained in which each cortical area and anatomical connection has its corresponding network 
node and link, respectively (Fig. 2e).  
Whole-brain models can be applied to investigate the functional consequences of 
neuroanatomical structure and connectivity. Multiple studies have simulated the spatial and 
temporal dynamics of brain activity that spontaneously emerges in resting conditions to explain 
the interplay between and functional coupling of areas89-93. It transpires that the structural 
connectivity imposed by cortical anatomy, along with dynamic parameters, determines and 
explains the emergence of functional communities of areas in the resting state94-99. 
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Whole-brain networks provide an important tool for understanding aspects of brain activity. 
However, it is not uniformly functioning whole areas, but rather neurons and their interaction in 
neuronal circuits that are the functional units that carry brain function and cognition. The crucial 
neuronal circuits and their interconnecting links are in part determined by neuroanatomical 
structure, but an equally important contribution to circuit formation comes from synaptic 
plasticity. Therefore, to move towards improved biological plausibility, it is necessary to 
incorporate neurons and plasticity into whole-brain network simulations, thus taking advantage 
of the constraints realized by the aforementioned associative neural networks (for example, 
see refs. 57,62,100,101). In essence, whole-brain network models can be improved by adding more 
detail at the sub-area and neuronal levels; correspondingly, DNNs can be made more realistic 
by adding neuroanatomical information about within-area and between-area connectivity. 

 
Brain constraints 
To make neural networks of neurocognitive function more realistic, it is necessary first to 
develop models of neuronal mechanisms across different levels, ranging from the micro-levels 
of neurons and local cortical circuits to the macro-level of cortical areas and global connectivity, 
and second to apply constraints from neuroscience at these different levels (Fig. 1). Previous 
proposals have already discussed various different constraints on neural networks7,38,100,102,103, 
but have frequently listed neurobiological constraints side-by-side with technical or practical 
criteria (for example ‘computational efficiency’ or ‘scalability’100), or addressed biological 
plausibility very generally (for example as ‘biological realism’ in ref. 7).  
Below, we spell out point-by-point what ‘biological realism’ implies and discuss a list of specific 
neurobiological constraints applicable to network models of cognitive functions — some of 
which are also suitable for neural networks more generally. As cognitive processes are in 
focus, mechanisms in the forebrain and especially in the cortex receive special attention. The 
proposed constraints are not thought to represent categorical features that must necessarily 
be met by models in a binary fashion. Rather, we conceive them as dimensions along which 
neural models can be adjusted gradually, in view of their specific purposes. 
 
Integration at different levels. Most previous modelling has focused on one specific grain 
size, aiming to approximate neuronal function at the level of either single neurons104,105, 
neuronal interaction in local cortical circuits106-109 or global interplay between cortical areas (see 
Whole-brain networks). To simultaneously apply constraints at different levels of brain structure 
and function, these different levels must be addressed and integrated into a single model. 
Furthermore, multi-level modelling is required to exploit multiple sources of experimental data 
for model validation101,110-112. These different sources include behavioural performance (for 
example, accuracy and response times in cognitive experiments), and neurophysiological 
activity, where, once again, different spatial scales come into play, ranging from the micro-level 
of single-cell and multi-cell recordings to that of local field potentials and macroscopic local 
area activations as revealed by non-invasive neuroimaging techniques, such as 
electroencephalography (EEG), magnetoencephalography (MEG) and functional MRI. These 
physiological data also come at different temporal scales, ranging from millisecond delays 
between neurons and high-frequency oscillations, to slow potential shifts and neurometabolic 
changes. The activity of recorded neurons or imaged areas, and even the similarities between 
these activation patterns113,114 or the transient functional interactions they reveal115,116, can be 
related to activation patterns of artificial neurons, local neuron clusters or ‘area’ components 
of a model. Likewise, spatio-temporal patterns of activity within a local cortical neighbourhood 
or across different cortical areas can be compared with the patterns produced and integrated 
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by networks. Such comparison of activity patterns across different scales requires that 
components of the brains and networks resemble each other structurally, and that it is possible 
to identify brain parts with network parts. Only in this case can the physiological measures be 
used to validate the neural models. The constraints below address different aspects of such 
similarity. 
 
Neuron models. The functional units of the cortex and brain are neurons. These neurons 
receive inputs that are translated into postsynaptic potentials and finally into an output of 
discrete action potentials, whereby action potential frequency can vary continuously117,118. All 
neural networks are composed of artificial correlates of neurons, but the level of detail with 
which neuronal function is simulated varies considerably 104,105,119.  
Mean field models use neurons with continuous inputs and outputs (thus ignoring the spiking 
of most real neurons), together with a transfer function that transduces the former into the 
latter120,121. They can be interpreted to simulate the firing probability of single neurons or the 
cumulative activity of local neuron circuits. The more sophisticated spiking ‘integrate-and-fire’ 
neurons model the summation of postsynaptic potentials and resultant neuronal firing, and can 
be extended to integrate dendritic compartments and non-linear interactions between their 
inputs104,122-125. Multi-compartment and biophysical neuron models can include even more 
detail, including subdivisions of the dendritic tree, postsynaptic ion-channel dynamics and 
dendritic action potentials104,126-129. Thus, a dimension of progression addressing the degree of 
realism of the neuron model may advance from mean field to integrate-and-fire to biophysical 
neuron models. Furthermore, some neuronal activity is difficult to explain by the input and can 
thus be seen as noise130. The addition of noise, along with adaptation (that is, the reduction of 
activity with prolonged activation), can thus further increase the degree of realism of neuron 
models.  
However, please note that the most detailed neuron model is not always the best choice for a 
given research question. Not only can relatively basic neuron models yield excellent 
descriptions of neuronal activity104; the greater computational resources required by 
sophisticated neuron models also currently limit their applicability to large-scale simulations of 
within-area and across-area interactions relevant for cognition. 
 
Synaptic plasticity and learning. Evidently, the inclusion of learning mechanisms is a crucial 
biological ingredient of biologically plausible networks. As mentioned, localist and whole-brain 
models typically lack this feature. To model multiple learning systems in the brain, the 
implementation of both major forms of learning, supervised and unsupervised, is necessary.  
Learning based on biologically plausible Hebbian principles is relevant for all cognitive 
domains. It is approximated by various different learning rules131. Some of these rules are 
elementary; for example, implementations of the ‘fire-together-wire-together’ principle lead to 
long-term potentiation (LTP) of connections between co-activated neurons. Other rules include 
more neurophysiological detail, in particular ones that can implement both LTP and, as a 
consequence of uncorrelated or anticorrelated activation, long-term depression (LTD)132,133. 
Synaptic plasticity dependent on the timing of action potentials, known as spike-timing 
dependent plasticity (STDP), is a consequence of Hebbian learning realized in sophisticated 
implementations134-137. Thus, a progression can be seen from the absence of learning, to LTP-
based Hebbian learning and, ultimately, Hebbian LTP-plus-LTD learning rules and the addition 
of STDP. 
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Supervised learning involves the use of a feedback signal that informs the individual or 
network) whether performance was appropriate, or wrong or erroneous. However, the choice 
of algorithms used in supervised-learning simulations has been guided not only by biological 
plausibility7,138; the computational efficacy of gradient-dependent learning has played a major 
role 55,56,62. It is controversial whether these latter algorithms are biologically realistic and 
applicable to sophisticated learning in specific cognitive domains. Some researchers have 
criticized the lack of strong biological support for mechanisms that compute and feed error 
gradients back through feedforward neuron networks7,139, whereas others point to recent 
emerging evidence for neurobiological mechanisms that could, in part, support aspects 
thereof56,140-142. The mechanisms by which error gradients might gradually propagate 
backwards through a population of biological neurons remain a target of ongoing research.  
A further putative problem concerns the type of feedback required for gradient-dependent 
learning. In DNN simulations, thousands of learning trials are available, whereby, for example, 
object pictures are classified with regard to category membership (for example, whether they 
show cats or cups). However, in many cases of classification and language learning in humans, 
such feedback does not play a major role — and is, if at all, only rarely available143. It rather 
seems that, in some cases of cognitive learning, the absence of certain inputs is sufficient. For 
example, to ‘preempt’ the use of specific linguistic constructions — that is, to block them from 
the learner’s repertoire — it is sufficient to hear other constructions in contexts where the pre-
empted constructions could in principle be used144,145. This type of cognitive learning is not 
explained by feedback-driven supervised learning but invites modelling based on Hebbian 
plasticity146. Nevertheless, explicit feedback is important in some types of learning (such as 
reinforcement learning) and its biologically realistic implementation is crucial 7,48,138. 
 
Inhibition and regulation. Brains are regulated systems, and cortical activity is regulated by 
control mechanisms at different levels. These include the microscopic local circuit level, at 
which excitatory cortical neurons interact with local inhibitory cells, and the macroscopic, more 
global level of interacting brain parts, at which cortical activity is regulated through information 
exchange with the thalamus, basal ganglia and other subcortical structures6,147,148. Many 
distributed neural networks used for simulating cognition are composed of excitatory units only 
and lack inhibition mechanisms. Other modelling frameworks implement regulation at an 
abstract level, for example by predefining a maximum number of neurons in an area that are 
allowed to become active at one time36,119. More realistic neural network models include 
excitatory and inhibitory neuronal elements, such that activity regulation and control is 
achieved by their interplay, a mechanism crucial for arousal and attention (see Perspectives 
section). Few models have realized both local and global regulatory mechanisms42-44,109,110,149-

154. Inclusion of inhibition and regulation mechanisms at both the local circuit level and more 
global levels (such as the area level) is an important feature of making neurocognitive networks 
biologically plausible. 
 
Area structure. The cortex is structured into a set of areas, whereby area definition is primarily 
based on anatomical criteria and sometimes refined using functional information (see, for 
example, the Brainnetome Atlas)80-82,155. Depending on the question to be addressed by a 
simulation, a network model may implement one, a specific selection of, or all cortical areas 
along with subcortical nuclei. Each area or nucleus can be realized as a separate ‘layer’ or 
model area including a predefined number of artificial neurons. Dimensions of progressing 
towards biological realism include the range of brain parts and regions covered by the model 
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(from one, to several, to whole-brain) and the granularity of the modelled areas, moving from 
coarse to more fine-grained area subdivisions. 
 
Within-area local connectivity. Pyramidal cells, the most common excitatory neurons in 
cortex, each carry 10,000–40,000 dendritic spines20,156, each of which in turn typically contain 
one synapse20. Therefore, one of these cells may make contact with a few tens of thousands 
of other cortical cells — within a pool of 15–32 billions of neurons in human cortex overall157. 
The number of connections (more than 1014) is too huge to be determined, item-by-item, by 
the genetic code alone, and therefore stochastic principles must also co-determine whether a 
specific pair of neurons is connected. The probability that two adjacent pyramidal neurons are 
connected decreases with the distance between them20,101,158,159. In sum, neuroanatomical 
studies indicate that local excitatory connections within a cortical area are sparse and show a 
neighbourhood bias towards links between adjacent neurons 20,160.  
In view of these features, the lack of within-layer connections of hetero-associative networks 
does not seem biologically realistic. Many networks that include auto-associative layers or 
areas21,22,28,161 include full connectivity between all neurons within these areas and, similarly, 
the memory layers of simple recurrent networks57 have all-to-all recurrent connections. Such 
full auto-associativity likewise contrasts with the sparseness of intrinsic local cortical 
connections. The brain constraint of sparse, local and partly random connections with a 
neighbourhood bias has been realized in neural networks that connect auto-associativity with 
between-area hetero-associative connections24,149,150,162. Most advanced with regard to the 
local connectivity constraint are microcircuit models that realize different cell types and their 
location in layers of the neocortex109,110,152,154,163. Nonetheless, for most neural networks 
available today, the implementation of within-area connectivity constraints still leads to an 
increase in biological realism101. 
 
Between-area global connectivity. The connections between areas of cortex follow some 
general rules. Most links are reciprocal. Adjacent areas are almost always interlinked, and 
second-next neighbours are connected in many cases20,164. However, longer-distance links are 
sparser, and much effort has been spent to map them precisely using invasive techniques (for 
example, with tracers) and non-invasive techniques (such as DTI/DWI)101,165-172.  
If two areas are interlinked, their connections are in most cases reciprocal and show 
topographic projections, such that local neighbouring relationships are preserved. Between-
area connections are carried by long axon branches of cortical pyramidal cells. These axon 
branches pass through the white matter and can reach neurons in distant areas, where they 
branch and make contact with a local neighbourhood of neurons. Most hetero-associative 
artificial networks implement between-area links as all-to-all connections. An advance in 
biological realism can be achieved by introducing random connectivity with biases towards 
topographical projections and neighbourhood links, as, for example, in multi-area auto-
associative and convolutional deep networks43,44,173. At the macroscopic level, it is biologically 
motivated to replace the typical linear lineup of next-neighbour-connected areas (Fig. 2c,d) 
with realistic connectivity schemes (see, for example, refs. 65,168,174 and section on ‘Whole-brain 
models’), ideally taking into account any connection asymmetries and even the number of 
axons per fibre bundle along with axonal conduction delays. Therefore, essential brain 
constraints on artificial neural networks come from the connectivity structure of between-area 
links as documented by neuroanatomical research.  
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Additional constraints on global connectivity may be taken from measures of functional 
interaction, including correlation-based undirected functional connectivity and directed 
effective connectivity175-178, although we suggest applying such data as neurophysiological 
evidence for validating anatomically constrained models rather than as a-priori constraints (see 
‘Integration of modelling at different levels’). 
 

Recent progress and trends 

We propose that models of brain function should attempt to integrate several and, ideally, all 
of the seven brain constraints mentioned above. The integration of microscopic and 
macroscopic levels is crucial to this endeavor (see constraint ‘Integration of modelling at 
different levels’). Microcircuit networks provide a detailed picture of the functional interplay 
between connected excitatory and inhibitory neurons located in different cortical layers within 
one local cluster of neurons (constraints ‘neuron models’, ‘inhibition and regulation’ and ‘within-
area local connectivity’)109,110,152,153. Several microcircuit models have been integrated into 
models of multiple cortical areas by taking into account long-distance connectivity as well 
(constraints ‘area structure’ and ‘between-area global connectivity’)154,174,179-181.  
The model by Schmidt et al.154 convincingly integrates local-circuit with area-structure and 
global-connectivity constraints and simulates resting-state activity of the human brain at a 
hitherto unprecedented level of detail (Fig. 3). However, this model is computationally 
demanding and touches the limits of simulation capacities of current cutting-edge computing 
equipment, even though it restricts itself to modelling 32 areas, each of which simulates 
neurons below just 1 mm2 of the cortical surface. These restrictions indicate that, in view of 
keeping computational efforts manageable, it is necessary to carefully select the degree to 
which constraints can gradually be met. Furthermore, applying all constraints in their most 
extreme form could result in computationally unrealizable models, which may, even if realized, 
be too complex to be helpful as tools for better understanding brain function.  
Multiple-area networks including microcircuits open novel perspectives for neural modelling of 
cognition. After inclusion of biological learning mechanisms (constraint ‘synaptic plasticity and 
learning’), they may be applied to simulate and potentially explain higher cognitive functions. 
Below, we address putative benefits of adding the aforementioned neurobiological constraints 
to neural models of cognition. 
 
Linking cognitive theory to the brain. Cognitive models may perfectly fit the data obtained 
in cognitive tasks, independent of whether they are implemented algorithmically or in a neural 
network. However, there is typically more than one theory, and hence algorithm or network, 
that can model a given data set. An advantage of neural models is that they allow the 
introduction of functional neuroscience constraints that can be used to decide between these 
alternatives9.  
Object recognition and classification: As mentioned, the evidence for cognitive neural model 
evaluation can come from single-cell and multiple-cell recordings111,182, fMRI activation patterns 
of areas, or spatio-temporal activation patterns revealing the orchestration of neural activity 
across different neuron populations or areas162,183-185. For example, a large range of models of 
object recognition are able to describe human object classification performance, but only 
neural models with some similarily to brain structure can be tested using neurophysiological 
data recorded at different levels of human and monkey inferior temporal cortex186,187. For such 
testing, it is particularly useful to apply not only measures that reveal the activated loci during 
object perception and classification, but also the more sophisticated method of 
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representational similarity analysis (RSA). RSA allows one to relate the degrees of similarity 
between brain activation patterns elicited by different stimuli to the similarity structure of the 
stimuli themselves, which can be measured at different levels (for example, perceptual or 
semantic)113. Notably, RSA has revealed that neurometabolic activity in inferior temporal cortex 
reflects semantic similarities of visually perceived objects186. Application and comparison of 
alternative neural (and non-neural) models have shown that the best fit of area-specific 
activation patterns and pattern similarities in temporal cortex signifying object perception was 
achieved with a feedforward convolutional DNN trained by applying supervised learning184. 
Furthermore, recent research indicates that inclusion of recurrent connections in DNNs is 
crucial for capturing aspects of the fast neurophysiological dynamics observed in temporal 
cortex188. Over and above the structural and functional constraints already addressed by these 
models, further structural constraints on within- and between-area connectivity may be 
considered in future (constraints ‘inhibition and regulation’, ‘within-area local connectivity’ and 
‘between-area global connectivity’). 
Attention. Research on attention offers another example for the application of neuroscience 
constraints to cognitive theory. Psychologists had long theorized about the fact that visual 
selective attention biases object and feature perception and that different perceptual elements 
compete with each other for attention, an interaction described by the biased competition 
model of attention189. This cognitive theory was translated into a neurocomputational model of 
early and higher visual cortex (including V2 and V4). Pools of excitatory and inhibitory neurons 
with within-area and between-area connections inspired by neuroscience data were used to 
model the interaction between representations, attentional bias and resource-limiting inhibition 
and to help to explain results of behavioural and neurophysiological recording experiments in 
non-human primates182,190. In a separate line of work using a convolutional DNN, the effects of 
attention on visual object classification were recently shown to depend on the level at which 
biases are applied, with modulation at higher layers being relatively more effective than 
modulation at lower layers in biasing attention toward specific object categories191,192. This 
observation may help to clarify the role of anterior temporal and prefrontal areas in visual 
attention processing193. Future biological modelling may marry within-area inhibition with deep 
architectures, constraining the latter using the neuroanatomical connectivity of the visual ‘what’ 
and ‘where’ streams, and/or may apply Hebbian learning instead of backpropagation for weight 
tuning (constraints ‘synaptic plasticity and learning’, ‘area structure’, ‘within-area local 
connectivity’ and ‘between-area global connectivity’). 
Language processing and reasoning. A relatively straightforward way of modelling cognitive 
brain functions in a neurobiological format is to select a set of areas and nuclei, model each 
using a set of neurons, assign cognitive functions to model areas and determine the 
interactions among them using predefined or learned mappings between area-specific 
activation vectors. This strategy has given rise to biologically inspired models of cognitive 
functions, including concept, language and number processing47,194-198. One such model47 is 
particularly impressive because of its size (2.5 million neurons) and implementation of the 
neuron-model constraint (integrate-and-fire neurons) in various cognitive tasks, addressing, for 
example, number recognition, question-answering and even fluid reasoning199. Twenty brain 
regions (areas and nuclei) are represented in the model, each by an ensemble of neurons, 
although global connections are sometimes idealized (for example, showing a linear line-up of 
areas from primary visual to anterior-temporal). Within areas, there is either no or full 
connectivity, and inhibitory neurons are missing. Therefore, three of the seven constraints have 
been addressed (‘Neuron models’, ‘Area structure’ and ‘between-area global connectivity’). 
Other brain-constrained models using smaller vocabularies and task ranges than those used 
in this large model have successfully integrated conceptual and language processing with 
action and perception mechanisms and have been applied in robots194,197,198,200. 
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Explaining neuroscience findings. Beyond putting cognitive theories into a neurobiological 
environment, brain constrained modelling can also provide answers to long-standing questions 
in neuroscience about how specific capacities of the brain are mechanistically implemented, 
how they emerge in ontogeny, how they came about in phylogeny and why they are situated 
in the specific brain parts where they are observed to be situated. We now turn specifically to 
this explanatory perspective. 
Memory. Some models discussed above have provided a mechanistic explanation for the 
competition aspect of attention, which emerged from local inhibitory connections and between-
area projections182; however, the other component of the biased-competition model of 
attention, the bias (such as that towards an object or part of visual space), is typically presented 
to the model from the outside and thus remains without model-immanent explanation. A 
mechanism for biases may come from network models of memory that account for memory 
dynamics based on neuronal function and structural connectivity. Here, memory mechanisms 
at the subcellular level (such as synaptic plasticity) are important, but in these models the 
questions of why certain types of memory develop in specific species, brain parts and circuits 
are still partly open. With appropriately adjusted activation thresholds and synaptic weights, a 
fully connected auto-associative memory is characterized by persistent attractor states, a 
possible correlate of working memory22,201,202. In models using spiking model neurons, auto-
associative networks with all-to-all connectivity within their ‘areas’ gave rise to firing patterns 
resembling those recorded from neurons in inferior temporal lobe during working memory 
experiments39,46,203.  
Further work has addressed the question of why different cortical areas typically show different 
predominant memory activity patterns46,204. Hebbian learning principles suggest that memory 
circuits are built from neurons firing together during sensory stimulation and thus located in 
areas where the to-be-stored information arrives; that is, in primary areas. However, most 
neurons with memory characteristics develop in multimodal areas (in prefrontal, anterior-
temporal and posterior-parietal cortex) distant from primary areas. A deep neural model 
implementing six frontal and temporal areas and their neuroanatomical connectivity structure 
showed that unsupervised Hebbian learning applied to this network gives rise to firing patterns 
and realistic distributions of memory cells across primary, secondary and multimodal areas, 
thus providing an explanation of cortical memory topographies and dynamics based on neuron 
function and corticocortical connectivity185,204. On a related thread, a recent study asked why a 
specific form of memory, verbal working memory (that is, memory for spoken words and 
language-like acoustic stimuli), developed in the context of specific evolutionary changes of 
the connectivity structure of fronto-temporal areas and is specific to humans. It was shown that 
the specific increase in fronto-temporal connectivity observed in primate evolution led to the 
emergence of distributed neuronal circuits for articulatory-acoustic units205, thus offering an 
explanation of a specifically human trait based on phylogenetic structural change (Fig. 4). This 
model and the previously described one realize the seven constraints discussed in this article 
(with special emphasis on ‘between-area global connectivity’), although the number of areas 
and the level of detail of local microcircuit simulation could still be increased. 
Concepts. Similar explanatory advances could be achieved in the domain of language and 
conceptual processing. It is well-known that multimodal areas in frontal, temporal and parietal 
lobe are important for conceptual and semantic processing generally, whereas modality-
preferential sensory and motor areas contribute to the processing of specific semantic 
categories206-209. An explanation of why these particular sites are relevant for concepts 
generally or specifically had been missing. Brain theory suggests that the convergence of 
multimodal information is essential for conceptual mechanisms210. To get from the visual 
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perception of a cat to the related concept and, for example, the knowledge of what kind of 
sound a cat typically produces, information from different modalities needs to be integrated. 
Such integration of multimodal information requires connections bridging between modality-
specific neural systems in different cortical areas (which are distant from each other), which 
implies a role of large-scale connectivity structure in conceptual processing. Modelling of word 
learning processes in frontal and temporal cortex that applied realistic early language learning 
scenarios, unsupervised learning and anatomically constrained local and global connectivity, 
revealed a distribution of neuronal circuits for conceptual and semantic processing consistent 
with the data. Specifically, most neurons of conceptual circuits, which formed as a 
consequence of co-processing information about signs and their related objects or actions 
(Fig. 5), were housed in the model’s multimodal convergence hubs, thus explaining the general 
‘pull’ away from the areas where sensorimotor information reaches the cortex towards the most 
strongly connected connector hub areas. By contrast, the stimulation of specific modality-
specific areas during conceptual learning and the resultant correlated neural activation 
topographies helped to explain the category-specific contribution of modality-preferential areas 
(Fig. 5)185,211-213. Again, realistic between-area connectivity was a crucial factor of these 
explanations; all seven constraints were addressed. 
 
Future applications 
Besides the aforementioned theoretical and explanatory advances offered by brain-
constrained modelling, this novel strategy offers very practical application strategies for the 
future. One such application addresses neuroplasticity, aiming at predicting and explaining 
reorganization of cognitive functions after lesion or deprivation. In this context, recent modelling 
attempts have targeted, for example, altered language processing in patients with focal lesions 
of language-relevant cortical areas214 and sensory deprivation in blind people50. These 
modelling experiments have led to accounts of well-documented neuroplasticity phenomena; 
for example, the takeover of visual areas during language and cognitive processing in 
congenitally blind individuals50.  
In future, it may become possible to perform neurocomputational modelling constrained by 
specific features of individual brains. Results obtained with individually constrained neural 
networks may open new perspectives on predicting future neuroplastic dynamics215 and may 
be used for planning personalised therapy or surgery, for example for individuals with brain 
tumours216-218. Brain-constrained modelling applied to particular populations and even 
individual cases may thus open fruitful future perspectives. 
 
Conclusion 
Based on a brief overview of neural network simulations of cognition and their successes, we 
here suggest a move towards more biologically oriented modelling. According to the position 
put forward in this Perspective, neuroscience constraints have priority over other aims, such 
as processing efficacy and big data processing. Beyond the imperative to build models that 
bridge between the macro-scale and micro-scales, in order to be testable against physiological 
data at different levels, the proposed constraints address neuron models, learning algorithms 
and regulation mechanisms along with neuroanatomical constraints on model architecture that 
address area subdivisions and short-range and long-range connectivity. As concrete examples 
of brain-constrained modelling, we have reviewed biologically motivated neurocomputational 
implementations of neurocognitive theories and model-based explanations of the brain 
mechanisms underlying object perception attention, memory, concepts and language along 
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with their ontogenetic and phylogenetic development. The future outlook for brain-constrained 
modelling includes the generation of networks that realize features of individual brains, which 
may, for example, be useful in assessing which parts of cortex are crucial for retaining specific 
cognitive functions in a given individual. 
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Figure Captions 
 
Fig. 1 | Seven constraints for making neural networks models more biologically 
plausible. Constraints address the integration of modelling across the levels of cortical 
neurons, local cortical circuits and macroscopic brain structures (a; left to right panels) and 
specifically highlight the nature of the neuron model (b), the implementation of synaptic 
plasticity and learning (c), regulation and control by way of interplay between excitatory and 
inhibitory neurons (d), gross anatomical structure and area subdivision (e) and local within-
area connectivity (f) and global between-area connectivity (g). Most current network models 
used for modelling cognition focus on only one or a few of these aspects, whereas brain-
constrained modelling works towards networks integrating all of them. Part e redrawn after 
ref. 109. Part g adapted from ref. 219, Figure 4, panel in row 5, column 3, and ref. 220, Figure 1, 
panel in row 2 on the right.  
 
Fig. 2 | Networks for modelling cognitive functions. a | A localist network model includes 
nodes representing cognitive entities, for example word forms (middle layer), phonemes 
(bottom layer) and semantic features (top layer). Lines indicate links between nodes. Nodes 
sum up their inputs linearly, such that the activation of the phoneme nodes of /d/, /o/ and /g/ 
activate the word node for ‘dog’, which, in turn, activates semantic feature units (filled circles 
at the top) characterizing the related concept. b | Auto-associative networks include 
connections between their neurons, such that reverberating activity is possible; they are 
inspired by the local connectivity between adjacent cortical pyramidal cells20,22. This panel 
shows the connectivity matrix between five artificial neurons, α to ε. These neurons make up 
an auto-associative network that includes two discrete representations indicated in magenta 
(neurons α-to-γ) and cyan (neurons γ-to-ε). Numbers specify the presence (1) or absence (0) 
of a connection from the neuron listed on the left of the matrix to the neuron indicated at the 
top. Each neuron becomes active if and only if it receives at least two simultaneous inputs, 
thus resulting in the discrete representations maintaining activity over time. c | In hetero-
associative networks, neuron populations ordered in ‘layers’ project onto each other serially, 
resembling connectivity in some neural structures. The typical three-layer networks used in 
many parallel-distributed processing (PDP) models include input and output layers plus a 
‘hidden’ layer in-between. d | Deep neural networks include several hidden layers. The 
number of neurons per layer can vary substantially. Representations are activation vectors 
across all neurons of a layer. e | Whole-brain models implement global between-area 
connectivity. Here, between-area connectivity of the right hemisphere is shown for a single 
subject (top left panel) and a group of subjects both in anatomical topology (bottom left) and 
in matrix form (right). The matrix gives all connections between pairs of areas of the network 
model; colors indicate connection weights (fiber densities). Part a is adapted with permission 
from ref. 11. Part e is adapted with permission from ref. 91. 
 
Fig. 3 | Multi-level network for explaining neural dynamics based on neuroanatomical 
constraints. Neurophysiological activity in 32 cortical areas of the visual system of the 
macaque was modelled154. Probabilities of between-area connectivity (bottom left panel) 
were based on anatomical data and general connectivity principles. Applying further 
neuroanatomical constraints, each area was modelled as a 1 mm2 patch of cortex with 
excitatory and inhibitory spiking cells (right panel) arranged in layers and specific connection 
probabilities within and between layer-specific cell populations (top left panel). The model 
was applied to reproduce and explain spiking neuronal activity from neurophysiological 
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recordings, activity propagation across areas and causal dynamic interactions between 
neuron populations and areas. The model unifies local and large-scale accounts of the cortex 
and clarifies how the detailed local and global connectivity of the cortex shapes its dynamics 
at multiple scales. Synaptic plasticity and learning were not modelled, although all of the 
other six constraints discussed in the main text were applied. Figure adapted, with 
permission, from ref. 180. 
 
Fig. 4 | Model of evolutionary connectivity change in left fronto-temporal cortex and its 
functional consequences. Verbal working memory is a feature of humans that apes and 
monkeys apparently lack. a | ‘Monkey’ and ‘human’ models of six areas of fronto-temporal 
cortex involved in articulation and auditory perception (middle panel) were used to address 
this issue. Areas were modelled as sets of 625 mean-field excitatory neurons, each 
projecting randomly to local neighbourhoods of other excitatory units (coloured); each 
excitatory cell has a corresponding inhibitory ‘cell’ (in grey) projecting to a narrow local 
neighbourhood (left panel). Between-area connections implementing comparative DTI 
results170,171,221,222 included next-neighbour connections between areas (green) and the 
second-next area connections specific to human perisylvian cortex (violet links in the ‘human’ 
model only). Correlation-based Hebbian plasticity was applied to imitate early sound and sign 
learning and to interlink articulatory and auditory information. b | After stimulation with learnt 
auditory–articulatory patterns, the monkey model showed weak and short-lived sequential 
activation of the model areas: A1, primary auditory cortex; AB auditory belt cortex; M1, 
primary articulatory motor cortex; PB, auditory parabelt cortex; PF, inferior prefrontal cortex; 
PM, premotor cortex. c | The same stimulation led to strong and long-lasting parallel 
activation in the areas of the human model. This prolonged activity can be interpreted as 
verbal working memory, a mechanism necessary for human language. The model applies all 
seven constraints discussed in the main text.. The left portion of part a is adapted with 
permission from ref. 211. Parts a-c are adapted from ref. 205. 
 
Fig. 5 | Brain-constrained model of semantic grounding. a | For simulating the infant’s 
learning of the meaning of object-related and action-related words, a 12-area model was 
created including the six inferior-frontal and superior-temporal perisylvian areas of Fig. 4 (A1, 
primary auditory cortex; AB auditory belt cortex; M1, primary articulatory motor cortex; PB, 
auditory parabelt cortex; PF, inferior prefrontal cortex; PM, premotor cortex), plus a ventral 
temporo-occipital visual stream (in green: AT, anterior-temporal cortex; TO, temporo-occipital 
cortex;V1, primary visual cortex) and a dorsolateral frontal action stream (in yellow-brown: 
lateral PF (PFL), lateral PM (PML) and lateral M1 (M1L)). Between-area connectivity is shown 
by arrows. Semantic learning and grounding of object and action words was modelled by co-
presenting acoustic and articulatory information along with either semantic-referential object-
related information or action-related information. This was done by co-activating specific 
patterns of spiking neurons in the different ‘primary’ areas of the model (M1 and M1L, V1 and 
A1) and Hebbian correlation learning. After learning, ‘auditory word comprehension’ was 
simulated by presenting specific previously learned auditory patterns to area A1. As a result, 
specific circuits of neurons distributed across the network were activated, as indicated by the 
coloured dots in the insets (1 dot indicates 1 active model neuron; blue, object–word circuit; 
red, action–word circuit; yellow, both), shown in the black boxes representing areas. b,c | 
Distribution of circuit neurons across model areas. Bars give average numbers of neurons 
per area for object- (dark grey) and action-word circuits (light grey); whiskers give standard 
errors. Note the relatively stronger representation of object–word circuits in ventral-visual 
areas and that of action–word circuits in dorsolateral-frontal areas in part a50,213, which offer 
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an explanation for well-known differences between the cortical mechanisms underlying 
action-related and object-related concepts207,223-226. All seven constraints discussed in the 
main text were implemented. Figure adapted, with permission, from ref. 185. 
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