502 research outputs found

    Angular sensitivity of blowfly photoreceptors: intracellular measurements and wave-optical predictions

    Get PDF
    The angular sensitivity of blowfly photoreceptors was measured in detail at wavelengths λ = 355, 494 and 588 nm. The measured curves often showed numerous sidebands, indicating the importance of diffraction by the facet lens. The shape of the angular sensitivity profile is dependent on wavelength. The main peak of the angular sensitivities at the shorter wavelengths was flattened. This phenomenon as well as the overall shape of the main peak can be quantitatively described by a wave-optical theory using realistic values for the optical parameters of the lens-photoreceptor system. At a constant response level of 6 mV (almost dark adapted), the visual acuity of the peripheral cells R1-6 is at longer wavelengths mainly diffraction limited, while at shorter wavelengths the visual acuity is limited by the waveguide properties of the rhabdomere. Closure of the pupil narrows the angular sensitivity profile at the shorter wavelengths. This effect can be fully described by assuming that the intracellular pupil progressively absorbs light from the higher order modes. In light-adapted cells R1-6 the visual acuity is mainly diffraction limited at all wavelengths.

    Pacing with restoration of respiratory sinus arrhythmia improved cardiac contractility and the left ventricular output: a translational study

    Get PDF
    Introduction: Respiratory sinus arrhythmia (RSA) is a prognostic value for patients with heart failure and is defined as a beat-to-beat variation of the timing between the heart beats. Patients with heart failure or patients with permanent cardiac pacing might benefit from restoration of RSA. The aim of this translational, proof-of-principle study was to evaluate the effect of pacing with or without restored RSAon parameters of LV cardiac contractility and the cardiac output

    Neural Action Fields for Optic Flow Based Navigation: A Simulation Study of the Fly Lobula Plate Network

    Get PDF
    Optic flow based navigation is a fundamental way of visual course control described in many different species including man. In the fly, an essential part of optic flow analysis is performed in the lobula plate, a retinotopic map of motion in the environment. There, the so-called lobula plate tangential cells possess large receptive fields with different preferred directions in different parts of the visual field. Previous studies demonstrated an extensive connectivity between different tangential cells, providing, in principle, the structural basis for their large and complex receptive fields. We present a network simulation of the tangential cells, comprising most of the neurons studied so far (22 on each hemisphere) with all the known connectivity between them. On their dendrite, model neurons receive input from a retinotopic array of Reichardt-type motion detectors. Model neurons exhibit receptive fields much like their natural counterparts, demonstrating that the connectivity between the lobula plate tangential cells indeed can account for their complex receptive field structure. We describe the tuning of a model neuron to particular types of ego-motion (rotation as well as translation around/along a given body axis) by its ‘action field’. As we show for model neurons of the vertical system (VS-cells), each of them displays a different type of action field, i.e., responds maximally when the fly is rotating around a particular body axis. However, the tuning width of the rotational action fields is relatively broad, comparable to the one with dendritic input only. The additional intra-lobula-plate connectivity mainly reduces their translational action field amplitude, i.e., their sensitivity to translational movements along any body axis of the fly

    Modeling visual-based pitch, lift and speed control strategies in hoverflies

    Get PDF
    <div><p>To avoid crashing onto the floor, a free falling fly needs to trigger its wingbeats quickly and control the orientation of its thrust accurately and swiftly to stabilize its pitch and hence its speed. Behavioural data have suggested that the vertical optic flow produced by the fall and crossing the visual field plays a key role in this anti-crash response. Free fall behavior analyses have also suggested that flying insect may not rely on graviception to stabilize their flight. Based on these two assumptions, we have developed a model which accounts for hoverflies´ position and pitch orientation recorded in 3D with a fast stereo camera during experimental free falls. Our dynamic model shows that optic flow-based control combined with closed-loop control of the pitch suffice to stabilize the flight properly. In addition, our model sheds a new light on the visual-based feedback control of fly´s pitch, lift and thrust. Since graviceptive cues are possibly not used by flying insects, the use of a vertical reference to control the pitch is discussed, based on the results obtained on a complete dynamic model of a virtual fly falling in a textured corridor. This model would provide a useful tool for understanding more clearly how insects may or not estimate their absolute attitude.</p></div

    Photophysics of the electronic states S0 and S1 for the coplanar molecular structures of the α,ω-diphenylpolyenes DPH and DPO

    Full text link
    Spectroscopy of the monoclinic and orthorhombic crystalline forms of all-trans-diphenylhexatriene (DPH) and all-trans-diphenyloctatetraene (DPO) show absorption and emission bands that do not generate the widely known Stokes shift of the polyene compounds, discovered by Hausser et al. in 1953 and repeatedly studied over the last 60 years. It can be concluded from our study that the crystallization system, whether in a monoclinic or orthorhombic system, does not significantly influence the photophysics of DPH and DPO in the crystal phas

    Relating Neuronal to Behavioral Performance: Variability of Optomotor Responses in the Blowfly

    Get PDF
    Behavioral responses of an animal vary even when they are elicited by the same stimulus. This variability is due to stochastic processes within the nervous system and to the changing internal states of the animal. To what extent does the variability of neuronal responses account for the overall variability at the behavioral level? To address this question we evaluate the neuronal variability at the output stage of the blowfly's (Calliphora vicina) visual system by recording from motion-sensitive interneurons mediating head optomotor responses. By means of a simple modelling approach representing the sensory-motor transformation, we predict head movements on the basis of the recorded responses of motion-sensitive neurons and compare the variability of the predicted head movements with that of the observed ones. Large gain changes of optomotor head movements have previously been shown to go along with changes in the animals' activity state. Our modelling approach substantiates that these gain changes are imposed downstream of the motion-sensitive neurons of the visual system. Moreover, since predicted head movements are clearly more reliable than those actually observed, we conclude that substantial variability is introduced downstream of the visual system

    Coding Efficiency of Fly Motion Processing Is Set by Firing Rate, Not Firing Precision

    Get PDF
    To comprehend the principles underlying sensory information processing, it is important to understand how the nervous system deals with various sources of perturbation. Here, we analyze how the representation of motion information in the fly's nervous system changes with temperature and luminance. Although these two environmental variables have a considerable impact on the fly's nervous system, they do not impede the fly to behave suitably over a wide range of conditions. We recorded responses from a motion-sensitive neuron, the H1-cell, to a time-varying stimulus at many different combinations of temperature and luminance. We found that the mean firing rate, but not firing precision, changes with temperature, while both were affected by mean luminance. Because we also found that information rate and coding efficiency are mainly set by the mean firing rate, our results suggest that, in the face of environmental perturbations, the coding efficiency is improved by an increase in the mean firing rate, rather than by an increased firing precision

    Intrinsic activity in the fly brain gates visual information during behavioral choices

    Get PDF
    The small insect brain is often described as an input/output system that executes reflex-like behaviors. It can also initiate neural activity and behaviors intrinsically, seen as spontaneous behaviors, different arousal states and sleep. However, less is known about how intrinsic activity in neural circuits affects sensory information processing in the insect brain and variability in behavior. Here, by simultaneously monitoring Drosophila's behavioral choices and brain activity in a flight simulator system, we identify intrinsic activity that is associated with the act of selecting between visual stimuli. We recorded neural output (multiunit action potentials and local field potentials) in the left and right optic lobes of a tethered flying Drosophila, while its attempts to follow visual motion (yaw torque) were measured by a torque meter. We show that when facing competing motion stimuli on its left and right, Drosophila typically generate large torque responses that flip from side to side. The delayed onset (0.1-1 s) and spontaneous switch-like dynamics of these responses, and the fact that the flies sometimes oppose the stimuli by flying straight, make this behavior different from the classic steering reflexes. Drosophila, thus, seem to choose one stimulus at a time and attempt to rotate toward its direction. With this behavior, the neural output of the optic lobes alternates; being augmented on the side chosen for body rotation and suppressed on the opposite side, even though the visual input to the fly eyes stays the same. Thus, the flow of information from the fly eyes is gated intrinsically. Such modulation can be noise-induced or intentional; with one possibility being that the fly brain highlights chosen information while ignoring the irrelevant, similar to what we know to occur in higher animals

    The Early neo2 Registry:Transcatheter Aortic Valve Implantation With ACURATE neo2 in a European Population

    Get PDF
    BACKGROUND: ACURATE neo2 is a transcatheter aortic valve implantation system consisting of a self-expanding bioprosthetic valve with supra-annular leaflet position and featuring innovations to facilitate placement accuracy and reduce paravalvular regurgitation. METHODS AND RESULTS: The goal of the Early neo2 (Early neo2 Registry of the ACURATE neo2 TAVI Prosthesis) was to gather real-life data on safety and efficacy in a European transcatheter aortic valve implantation population treated with ACURATE neo2. Data were collected from 554 consecutive patients treated with ACURATE neo2 at 12 European sites (mean age, 82 years; 66% women; mean European System for Cardiac Operative Risk Evaluation II, 4.5%±3.8%) between September 2020 and March 2021. The composite primary end point was the occurrence of any of the following: postoperative (in-hospital) paravalvular regurgitation grade ≥2, in-hospital acute kidney injury stage 3, postoperative pacemaker implantation, 30-day death, and 30-day stroke. The primary end point occurred in 12.6% of patients. The 30-day rates for all-cause death and all stroke were 1.3% and 2.7%, respectively, and 1.5% of patients exhibited stage 3 acute kidney injury. A total of 34 patients (6.2%) received a postoperative permanent pacemaker. Per core laboratory–adjudicated echocardiographic analysis, mean postoperative aortic valve gradient was 7.6±3.3 mm Hg, and 2.8% of patients exhibited paravalvular regurgitation grade ≥2. CONCLUSIONS: In this report of postmarket use of the ACURATE neo2 valve in a real-world transcatheter aortic valve implantation population, patients exhibited favorable postoperative hemodynamics and clinical outcomes and a low rate of postoperative pacemaker implantation.</p

    Localized direction selective responses in the dendrites of visual interneurons of the fly

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The various tasks of visual systems, including course control, collision avoidance and the detection of small objects, require at the neuronal level the dendritic integration and subsequent processing of many spatially distributed visual motion inputs. While much is known about the pooled output in these systems, as in the medial superior temporal cortex of monkeys or in the lobula plate of the insect visual system, the motion tuning of the elements that provide the input has yet received little attention. In order to visualize the motion tuning of these inputs we examined the dendritic activation patterns of neurons that are selective for the characteristic patterns of wide-field motion, the lobula-plate tangential cells (LPTCs) of the blowfly. These neurons are known to sample direction-selective motion information from large parts of the visual field and combine these signals into axonal and dendro-dendritic outputs.</p> <p>Results</p> <p>Fluorescence imaging of intracellular calcium concentration allowed us to take a direct look at the local dendritic activity and the resulting local preferred directions in LPTC dendrites during activation by wide-field motion in different directions. These 'calcium response fields' resembled a retinotopic dendritic map of local preferred directions in the receptive field, the layout of which is a distinguishing feature of different LPTCs.</p> <p>Conclusions</p> <p>Our study reveals how neurons acquire selectivity for distinct visual motion patterns by dendritic integration of the local inputs with different preferred directions. With their spatial layout of directional responses, the dendrites of the LPTCs we investigated thus served as matched filters for wide-field motion patterns.</p
    corecore