2,984 research outputs found
Finite element formulation for transient heat treat problems
The macrothermomechanical behavior of materials subjected to rapid thermal or mechanical loading such as occurs in most heat treatments is described. The equations are developed for Lagrangian, Eulerian, and intermediary kinematic descriptions and are independent of the constitutive laws and the equation of state; they can be solved numerically for a specified material and boundary conditions. The coupled transport effects between dissipation and energy are included. The conventional linearized stability approach indicates the numerical procedure to be stable, with certain restriction on the time step size
Residual stress in plasma sprayed ceramic turbine tip and gas path seal specimens
The residual stresses in a ceramic sheet material used for turbine blade tip gas path seals, were estimated. These stresses result from the plasma spraying process which leaves the surface of the sheet in tension. To determine the properties of plasma sprayed ZrO2-Y2O3 sheet material, its load deflection characteristics were measured. Estimates of the mechanical properties for sheet materials were found to differ from those reported for plasma sprayed bulk materials
Experimental study of bubble cavities attached to a rotating shaft in a reservoir
Bubble cavities formed by air entrainment and attached to a rotating shaft in an oil reservoir were studied. The cavities appear to the unaided eye as toroidal. High speed photography, however, reveals the individuality of the bubble cavities and their near solid body rotational characteristics. The cavities are distorted by the rotation effects but remain attached and tend to merge because of edge effects in the axial direction. The flow field within the reservoir is influenced by the unusual character of the two phase fluid found there; the vorticity is readily visualized. Other examples of vapor entrapment at the inlet of an eccentric rotor are also discussed. A simplified analytical method is provided, and a numerical analysis is being investigated. Vapor (void) entrainment and generation can significantly alter leakage rates and stability of seals, bearings, and dampers. Recognition of these effects in the component design systems will result only after detailed studies of the above phenomena
Nested subcritical flows within supercritical systems
In supercritical systems the design inlet and outlet pressures are maintained above the thermaodynamic critical pressure P sub C. Designers rely on this simple rule of thumb to circumvent problems associated with a subcritical pressure regime nested within the supercritical pressure system along with the uncertainties in heat transfer, fluid mechanics, and thermophysical property variations. The simple rule of thumb is adequate in many low-power designs but is inadequate for high-performance turbomachines and linear systems, where nested two-phase regions can exist. Examples for a free-jet expansion with backpressure greater than P sub C and a rotor (bearing) with ambient pressure greater than P sub C illustrate the existence of subcritical pressure regimes nested within supercritical systems
Evaluation of seals for high-performance cryogenic turbomachines
An approach to computing flow and dynamic characteristics for seals or bearings is discussed. The local average velocity was strongly influenced by inlet and exit effects and fluid injection, which in turn drove zones of secondary flow. For the restricted three-dimensional model considered, the integral averaged results were in reasonable agreement with selected data. Unidirectional pressure measurements alone were insufficient to define such flow variations. However, for seal and bearing leakage correlations the principles of corresponding states were found to be useful. Also discussed are three phenomena encountered during testing of three eccentric nonrotating seal configurations for the Space Shuttle Main Engine (SSME) Program. Fluid injection, choking within a seal, and pressure profile crossover are related to postulated zones of secondary flow or separation and to direct stiffness
Doppler cooling of calcium ions using a dipole-forbidden transition
Doppler cooling of calcium ions has been experimentally demonstrated using
the S1/2 to D5/2 dipole-forbidden transition. Scattering forces and
fluorescence levels a factor of 5 smaller than for usual Doppler cooling on the
dipole allowed S1/2 to P1/2 transition have been achieved. Since the light
scattered from the ions can be monitored at (violet) wavelengths that are very
different from the excitation wavelengths, single ions can be detected with an
essentially zero background level. This, as well as other features of the
cooling scheme, can be extremely valuable for ion trap based quantum
information processing.Comment: 4 pages, 4 figures, minor changes to commentary and reference
Numerical modeling of multidimensional flow in seals and bearings used in rotating machinery
The rotordynamic behavior of turbomachinery is critically dependent on fluid dynamic rotor forces developed by various types of seals and bearings. The occurrence of self-excited vibrations often depends on the rotor speed and load. Misalignment and rotor wobbling motion associated with differential clearance were often attributed to stability problems. In general, the rotative character of the flowfield is a complex three dimensional system with secondary flow patterns that significantly alter the average fluid circumferential velocity. A multidimensional, nonorthogonal, body-fitted-grid fluid flow model is presented that describes the fluid dynamic forces and the secondary flow pattern development in seals and bearings. Several numerical experiments were carried out to demonstrate the characteristics of this complex flowfield. Analyses were performed by solving a conservation form of the three dimensional Navier-Stokes equations transformed to those for a rotating observer and using the general-purpose computer code PHOENICS with the assumptions that the rotor orbit is circular and that static eccentricity is zero. These assumptions have enabled a precise steady-state analysis to be used. Fluid injection from ports near the seal or bearing center increased fluid-film direct dynamic stiffness and, in some cases, significantly increased quadrature dynamic stiffness. Injection angle and velocity could be used for active rotordynamic control; for example, injection, when compared with no injection, increased direct dynamic stiffness, which is an important factor for hydrostatic bearings
COVID-19 in children: Should we be worried?
Reports indicate that children infected with SARS-CoV-2 have thus far presented with less severe disease than adults. Anxiety regarding a greater ability to transmit the virus is largely unfounded and has played a significant role in the decision to allow children to return to school. In some patients, however, especially in infants and in those with underlying comorbidities, severe disease must be anticipated and planned for accordingly. The most relevant severe clinical presentation in addition to the established respiratory complications, is that of a multisystem inflammatory disorder, with features resembling Kawasaki disease. The impact of the pandemic on the economic and social wellbeing of children, including food insecurity and care when parents are ill, cannot be ignored. During this pandemic, it is imperative to ensure access to routine and emergency medical services to sick children. In so doing, potentially devastating medical and socioeconomic consequences can be mitigated
The effect of annealing on the creep of plasma sprayed ceramics
The creep of plasma sprayed ZrO2-8Y2O3 was measured at temperatues from 98 to 1250 C (180 to 220 F), and compared to creep of identical samples after annealing at temperatures from 98 to 1316 C (1800 to 2400 F). Loads and temperatures which produced significant creep of as sprayed ceramics produced no creep after annealing
- …