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The Digital Atlas of Ancient Life: 
delivering information on paleontology and biogeography

via the web

Jonathan R. Hendricks, Alycia L. Stigall, and Bruce S. Lieberman

The fundamental data of paleontology consist
of taxonomically identified specimens of known
spatiotemporal provenance that are curated in
museum collections. Analyses of these data can
lead to insights into biostratigraphy, macroevolu-
tion, biogeography, phylogeny, and paleoecology.
Although historical collections may contain speci-
mens of vague or indeterminate geographic and
stratigraphic position, most paleontologists have
recorded these data with a high degree of precision
for many years. One challenging problem with
using paleontological collections for research, how-
ever, is making correct identifications of fossil
material at lower taxonomic levels—in particular
species, but also at the genus level. One aspect of
the challenge is philosophical in nature, and
involves the human activity of circumscribing spe-
cies and higher taxa such that they best approxi-
mate biological reality (see Hendricks et al., 2014;
Allmon, in press). This activity is the concern of the
systematist, who makes such decisions based on
expert knowledge of a given group. Another con-

cern—which we focus on here—is practical in
nature and has to do with identifying fossil speci-
mens in hand sample and attaining information
about the spatiotemporal occurrences of taxa from
what may be far-flung museum collections. 

Short of having in-depth knowledge of a par-
ticular group, identifications of fossils at lower taxo-
nomic levels still largely rely upon access to printed
literature, such as regional guides (e.g., Linsley,
1994; Petuch, 1994; Feldmann and Hackathorn,
1996; Davis, 1998; Peterson and Peterson, 2008;
Wilson, 2014) and systematic treatments (e.g.,
Hendricks, 2009, 2015; Rode and Lieberman,
2002; Stigall et al., 2014a; Wright and Stigall 2013,
2014), or major compendia such as the Treatise of
Invertebrate Paleontology (see Selden, 2012).
Such literature may be expensive, locked behind
journal paywalls, out-of-print, and/or may also con-
tain technical jargon that is inaccessible to non-
professionals and students, especially those new
to paleontology. An additional problem presented
by older literature is that it may not reflect current
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taxonomic nomenclature. Finally, printed literature
itself is starting to have less appeal to many
younger professional and amateur paleontologists,
many of whom often go to the Internet first for infor-
mation. 

An early and important development in the
transition from print to digital presentations of fos-
sils was the PaleoBase series (e.g., MacLeod,
2001, 2003, 2010; MacLeod and Henderson,
2007). This series, which provides digital guides to
both macro- and microfossils, emphasizing the
high-quality specimens in the collections of The
Natural History Museum, London, is available as a
relational database via compact disk, though it is
not available as a free, online resource. Other sem-
inal developments include the numerous useful
web resources for paleontology that have been
developed. The early standards in this regard were
set first by the University of California Museum of
Paleontology (www.ucmp.berkeley.edu/exhibits/
index.php) and the Paleontology Portal
(www.paleoportal.org). Subsequently, the Paleobi-
ology Database (www.paleobiodb.org) has also
become a frequently used resource. Unprocessed,
raw paleontological occurrence data may now be
directly downloaded from many online museum
databases and corresponding portals (e.g., the
Integrated Digitized Biocollections database, iDig-
Bio: www.idigbio.org), but these datasets—espe-
cially if large—are often incomprehensible on their
own and provide little help with either identifying or
enhancing understanding of fossil discoveries.
Most of these high-quality, successful, and admira-
ble resources are not specifically structured to
assist with the identification of fossil species,
though there are some notable exceptions, includ-
ing the website of the Cincinnati Dry Dredgers (dry-
dredgers.org). Thus, new open-access resources
are needed for both avocational and professional
paleontologists. 

To this end, we have developed the freely
accessible Digital Atlas of Ancient Life: www.digita-
latlasofancientlife.org/. Although the noun “atlas” is
typically used to refer to a bound collection of
maps, another use of the term is a “volume con-
taining illustrative plates, large engravings, etc., or
the conspectus of any subject arranged in tabular
form” (Oxford English Dictionary, 2014). We apply
the term in both senses, as we seek to provide
photographic aids and associated content to help
identify fossils, as well as to generate maps that
demonstrate how species’ ranges vary over geo-
logical time scales. Here, we present the digital
atlas project as a model for how web-based

resources might be employed—especially in syn-
thesis with existing museum databasing and digiti-
zation initiatives—to assist avocational, student,
and professional paleontologists with fossil identifi-
cations by providing expert knowledge when it is
not otherwise directly available. In short, we view
the digital atlas project as an attempt to provide
expertly curated, focused context for the abun-
dance of newly digitized paleontological data that
are now becoming available online. We also com-
ment below on the potential of the Digital Atlas of
Ancient Life to serve as a new resource for K-16
education and outreach. 

PROJECT OVERVIEW

Focus

Generating a comprehensive atlas of ancient
life—especially at the species level—would be a
daunting task, whether undertaken in print or
online. Even generating a simple listing of a major-
ity of the described fossil species would be a mas-
sive endeavor, and this is likely why no such list
exists (the closest printed resource for marine ani-
mal fossils is Sepkoski’s [2002] compendium,
which was tabulated at the generic level). Just as a
comprehensive, global list of plant species would
not be particularly useful to an amateur botanist
trying to learn his or her local flora, a comprehen-
sive listing of fossil species (or even an atlas)
would present an overwhelming amount of infor-
mation and is perhaps more likely to result in mis-
identification than a correct name.

Generating multiple digital atlases, each
focused on a particular region and time period, is a
more manageable and useful approach. Avoca-
tional paleontologists and students in paleontology
classes are often interested in building fossil col-
lections from localities near where they live, which
are often from a single geological period. Likewise,
paleontological research is frequently focused on
temporally restricted fossil occurrences, often at
regional scales. Just as Roger Tory Peterson rec-
ognized that field guides should be composed at
the regional scale, embodied in his classic and
highly effective works on birds (e.g., Peterson,
1980), it is most useful for digital atlases of fossils
to do the same. The development of three open
access digital atlases are currently underway: 

1. The Ordovician Atlas of Ancient Life: Cincin-
nati Region United States (www.ordovicianat-
las.org/).

2. The Pennsylvanian Atlas of Ancient Life: Mid-
continent United States (pennsylvanianat-
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las.org/).

3. The Neogene Atlas of Ancient Life: South-
eastern United States (neogeneatlas.org/).

Our choice to develop initial digital atlases for
these three systems was based on three criteria: 1)
interest among avocational and/or professional col-
lectors; 2) availability of major museum collections
from which corresponding fossil images, as well as
stratigraphic and geographic occurrence data,
could be attained; and 3) research potential for
paleoecological, paleobiogeographic, and macro-
evolutionary studies.

The Ordovician fossils of the Cincinnati
region—including southwestern Ohio, southeast-
ern Indiana, and northern Kentucky—have fac-
tored importantly in our global understanding of
Late Ordovician geology and paleontology for over
a century. Corresponding strata contain a rich
assortment of marine invertebrate fossils (espe-
cially brachiopods, trilobites, bryozoans, and echi-
noderms) that have been the subjects of numerous
paleobiological studies (reviewed in Meyer and
Davis, 2009). Avocational paleontologists—includ-
ing members of the aforementioned Cincinnati Dry
Dredgers, a fossil club established in 1942—have
also heavily collected these strata and have con-
tributed to our scientific understanding of these
rocks through new discoveries, educational out-
reach, and collaborations with professionals (e.g.,
Morris and Felton, 1993; Kallmeyer and Donovan,
1998). These strata record a series of sea level
fluctuations, shifting oceanic conditions, and a
regional biological invasion event, the Richmon-
dian Invasion. Thus, studies of Cincinnatian fossils
have provided key insights into community struc-
ture and species stability across intervals of envi-
ronmental change and biotic immigration events
(e.g., Holland and Patzkowsky, 2007; Stigall 2010,
2014). The Ordovician Atlas is being developed
using the holdings of the Ohio University Inverte-
brate Paleontology Collection, the Limper Museum
at Miami University, and the Cincinnati Museum
Center. For additional details on the Ordovician
Atlas of Ancient Life, see Stigall et al. (2014b).

Fossils of the Pennsylvanian strata of the mid-
continent United States—which outcrop from Texas
to Iowa—are very well represented by the exten-
sive collections of the Division of Invertebrate Pale-
ontology at the University of Kansas (KU)
Biodiversity Institute and Natural History Museum.
Many of these collections were made through the
research activities of KU paleontologists, including
Raymond C. Moore, Roger Kaesler, A.J. Rowell,
and their colleagues and students. As most of the

studies conducted by these workers had a strong
stratigraphic component, these collections—which
form the basis of the Pennsylvanian Atlas of
Ancient Life—are associated with a high degree of
stratigraphic precision. Because of this, they are
particularly useful for investigating the responses
of species to ancient climatic changes, especially
as recorded by the cyclothems that characterize a
significant portion of the rock record in this region
(e.g., Holterhoff, 1996; Algeo and Heckel, 2008).

Finally, fossils from the extraordinary shell
beds that comprise much of the Neogene fossil
record of the southeastern United States have
been heavily collected and researched since the
mid-19th century. Modern study of these fossils has
been facilitated by the development of aggregate
quarries and other excavation activities that have
exposed numerous new localities in this topo-
graphically low-lying region, particularly in Florida.
Although entry into most commercial shell quarry-
ing operations has become difficult, this was not
always the case and very large collections of spec-
imens—particularly mollusks, but also including
corals, echinoids, brachiopods, and crustaceans—
were made in the mid-to-late 20th century when
collecting was more feasible. Research on these
fossils has ranged from systematic studies and
compilations (e.g., Olsson and Harbison, 1953;
DuBar, 1958; Olsson and Petit, 1964; Lyons, 1991;
Petuch, 1991, 1994; Campbell, 1993; Hendricks,
2009) to investigations of the responses of spe-
cies—some of which are still extant—to regional
paleoenvironmental changes during the Plio-Pleis-
tocene (e.g., Stanley, 1986; Allmon et al., 1996;
Saupe et al., 2014a). Major collections of Neogene
fossils from the southeastern United States are
present at several large U.S. museums. One of
these museums is the Florida Museum of Natural
History (FLMNH); the comprehensive collections of
the FLMNH were used to develop the Neogene
Atlas of Ancient Life.

Key Components and Underlying Data

Each digital atlas is structured to direct the
user to pages focused on individual fossil species.
Every species-level page features taxonomic infor-
mation, stratigraphic and geographic occurrence
data, and one or more photographs of the taxon
(Figures 1-3). The taxonomic classifications on
each species page follow up-to-date nomenclature
based on expert consensus. Each higher-level tax-
onomic name (genus to phylum) on the species
page is hyperlinked to a page with information
about that taxon and photographs of specimens
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belonging to immediately subordinate taxa. As an
example, the Ordovician Atlas page on the Class
Trilobita (www.ordovicianatlas.org/atlas/arthrop-
oda/trilobita/) provides information about the geo-
logic range, paleoecology, and characteristics of
trilobites, and also provides linked images of the
four orders of Cincinnatian trilobites (see Figure 4).

The geographic and stratigraphic occurrence
data presented for each species are derived from
georeferenced (c.f., Chapman and Wieczorek,
2006) locality data associated with the databased
museum collections identified above. Geographic
data associated with the Neogene Atlas are cur-
rently presented both qualitatively (e.g., southern

Florida to Virginia) and using static maps that char-
acterize species occurrences within discrete time
intervals (e.g., late Pliocene, middle Pleistocene).
The Ordovician Atlas includes dynamic, interactive
maps derived from georeferenced data shared with
iDigBio (see Figure 1). For an example, see the
occurrence map for the trilobite genus Flexicaly-
mene at: www.ordovicianatlas.org/atlas/arthrop-
oda/trilobita/phacopida/calymenidae/
flexicalymene/. Note that this map contains occur-
rence points for Flexicalymene beyond the Cincin-

FIGURE 1. Composite screenshot of the Ordovician
Atlas page for the trilobite species Flexicalymene meeki
(www.ordovicianatlas.org/atlas/arthropoda/trilobita/pha-
copida/calymenidae/flexicalymene/flexicalymene-
meeki). The bars labeled “Taxonomic Details”, “Strati-
graphic Distribution”, and “Published Descriptions” drop-
down to provide additional information on species
synonymy, stratigraphic occurrences, and quoted
excerpts of published descriptions, respectively.

FIGURE 2. Composite screenshot of the Neogene Atlas
page for the gastropod species Conus adversarius
(neogeneatlas.org/species/conus-adversarius), show-
ing the content provided under each of the three tabs
(additional images of this species are viewable online).
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nati region because it is constructed from all of the
museum records of Flexicalymene that are cur-
rently within the iDigBio database, not only those
from the museums directly associated with the
Ordovician Atlas. Our goal is to eventually employ
such maps on all three digital atlas websites. Spe-
cies-level stratigraphic occurrence data on the
Ordovician Atlas are presented at the sequence
and formation levels as both shaded stratigraphic
charts and listings; these data are presented as
listings at the formation (and sometimes member)
level on the Neogene and Pennsylvanian Atlases
(see, respectively, Figures 2 and 3). 

The spatiotemporal data underlying the geo-
graphic and stratigraphic occurrence records on
each digital atlas are as robust as the underlying,
digitized collections themselves, which have been
taxonomically identified by the specialists who
have worked with them over the years. Given that
they are derived from the most important museum
collections of fossils from the three regions of

focus, we expect that these records are in many
instances more complete than those that currently
appear in the printed literature and databases
developed primarily from the literature. One reason
for this is because the printed literature is static,
while many major museum collections are under-
going continuous curation (often following visits by
taxonomic experts) and development as new col-
lections are added to them. Another reason is that
many published accounts of species occurrences
may never have sought to be comprehensive (e.g,
faunal lists for individual localities), thus giving a
restricted view of the spatio-temporal distributions
of individual taxa. All of the occurrence data asso-
ciated with the digital atlas project are being made
publically available via the respective institutional
online databases (e.g., biodiversity.ku.edu/inverte-
brate-paleontology/collections/collections-search)
and also through iDigBio (www.idigbio.org) (the
only exceptions will be latitude and longitude data
for fossils from a very limited number of sensitive

FIGURE 3. Composite screenshot of the Pennsylva-
nian Atlas page for the brachiopod species Enteletes
plattsburgensis (pennsylvanianatlas.org/species/ente-
letes-plattsburgensis), showing the content provided
under two of the three tabs.

FIGURE 4. Higher level taxonomic information about
trilobites from the Ordovician Atlas (www.ordovicianat-
las.org/atlas/arthropoda/trilobita/), including links to the
four orders of trilobites present in the Ordovician of the
Cincinnati region. The bar labeled “Published Descrip-
tions” drops down to provide additional information.
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localities). These occurrence data have the poten-
tial to address many interesting paleobiogeo-
graphic questions in novel ways, especially when
analyzed in concert with predictive approaches
such as ecological niche modeling (e.g., Peterson
et al., 2011; Polly and Eronen, 2011), which has
been successfully applied to both modern (e.g.,
Bentlage et al., 2013; Robison et al., 2011; Saupe
et al., 2014b) and paleontological (e.g., Stigall
Rode and Lieberman, 2005; Maguire and Stigall,
2009; Stigall, 2012, 2014; Saupe et al., 2014a;
Myers et al., 2015; Saupe et al., 2015) datasets. 

Finally, as mentioned, all three digital atlases
feature high-quality images of fossils, and speci-
mens are typically shown in multiple orientations to
assist with identification (e.g., Figures 1-3). Each
image includes a scale bar and caption with the
specimen’s museum catalog number. A Creative
Commons Attribution-NonCommercial-ShareAlike
4.0 International license (creativecommons.org/
licenses/by-nc-sa/4.0/deed.en_US) is applied to
each image so that they can be used in most non-
profit applications without restriction.

Species pages associated with the Ordovician
Atlas currently have several additional features that
will eventually be added to the Pennsylvanian and
Neogene Atlases, including information about the
paleoecology of individual species and lists and/or
labeled figures indicating morphological features
that are important for identifying specimens in hand
sample (e.g., Figure 1).

EDUCATIONAL POTENTIAL

Besides providing new tools for identifying
and better understanding fossils from particular
regions, the digital atlases can be valuable educa-
tional resources for the general public and students
of all ages. Each includes information on the geo-
logic setting and stratigraphic framework for the
focal region (e.g., the Neogene Atlas of Ancient
Life, neogeneatlas.org/geology/). Additional infor-
mation about fossil collecting locations, relevant
links, and references used are currently available
on the Ordovician Atlas and are under develop-
ment for the other digital atlases.

Formal lesson plans are being developed in
association with each digital atlas and for the proj-
ect as a whole. K-12 exercises and lesson plans
take advantage of the innate interest that many
children have for fossils and are aligned with Next
Generation Science Standards (www.nextgen-
science.org/). Lesson plans currently deployed on
the Ordovician Atlas site (www.ordovicianatlas.org/
resources-for-teachers/) were developed in collab-

oration with science education faculty and utilize a
5E learning cycle approach for active learning
(Bybee et al., 2006). This approach emphasizes
early exploration of materials prior to explanation
and elaboration of concepts. Some of these exer-
cises (e.g., Stigall et al., in press) emphasize
place-based education and facilitate investigations
that prompt students to discover and describe how
the environments where they live—as well as
associated life forms—have changed over time.
Other exercises under development for the Neo-
gene Atlas will ask students to use map data to
explore how ancient species responded to environ-
mental changes, including whether the geographic
ranges of individual species changed over time
(e.g., by comparing the late Pliocene and early
Pleistocene occurrence maps shown in Figure 2).
Students will also be asked to quantify changes in
biodiversity patterns over time and recognize
events such as faunal turnovers. 

The digital atlases on their own are useful
resources for students in university paleontology
classes tasked with identifying a set of specimens
collected in the field. In addition, exercises appro-
priate for college-level historical geology or paleon-
tology laboratories have also been developed (e.g.,
Casey and Lieberman, 2014) and more are in
development. For instance, one of these will begin
with a digital scavenger hunt, which will require stu-
dents to explore the digital atlases in search of taxa
that show particular morphological features. The
goal of such an exercise is to familiarize students
with the diversity and variation of morphological
forms within and across taxonomic groups, leading
them to realize that this variation is useful for
understanding phylogenetic relationships. First,
students will be presented with illustrations and
descriptions of morphological features, for exam-
ple, different types of bivalve hinge dentition. Then,
students will be directed to search the digital
atlases for examples of species (or higher taxa)
that show a particular feature, for example, a
bivalve with a heterodont hinge. An exercise like
this could be done by students at home prior to
attending a corresponding laboratory featuring
actual fossils, or could be done in lieu of a physical
laboratory exercise. The latter will be advanta-
geous for courses taught entirely online, or at insti-
tutions that do not have extensive on-site teaching
collections. Once students are familiar with the
diversity of morphological forms (i.e., characters
and character states) within taxonomic groups—as
well as the corresponding terminology—they will
be presented with a list of taxa to research. Based
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on the distribution of character states shared
among those taxa, they will be asked to construct a
simple phylogenetic hypothesis in which character
states are mapped at the appropriate nodes on the
tree.

These are just a few of the many ways in
which the digital atlases can be used as K-16 edu-
cational resources. We expect and hope that edu-
cators will find additional ways to use the products
of the Digital Atlas of Ancient Life project in their
classrooms.

CONCLUSION

The science of paleontology—to its great ben-
efit—has long embraced data digitization as a
means to better understand the history of life on
Earth. The utility of the resulting datasets, and the
variety of the questions we can address using
them, depends ultimately on the quality of our fun-
damental data: correctly identified specimens in
museum drawers that are from well-constrained
stratigraphic and geographic settings. The field of
paleontology has lagged in the development of dig-
ital resources to help assist workers with the identi-
fication of fossil material. We propose the Digital
Atlas of Ancient Life project as one potential model
for how such identification guides might be orga-
nized and the types of information that they may
contain. In addition to their utility for identifying fos-
sils from the regions of current focus, we hope that
the digital atlases will draw greater attention to the
general problem they aim to alleviate.
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