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ABSTRACT

A formulation is presented that describes the
macrotheromechanical behavior of materials subjected
to rapid thermal or mechanical loading such as occurs
in most heat treatments. The equations are developed
for Lagrangian, Eulerian, and intermediary kinematic
descriptions and are independent of the constitutive
laws and the equation of state; they can be solved
numerically for a specified material and boundary
conditions. The coupled transport effects between
dissipation and energy are included. The conventional
linearized stability approach indicates the numerical
procedure to be stable, with certain restrictions on
the time step size.

NOMENCLATURE

A, 8, D, G,
Q, R, S

element matrices

o

body force
wave speed
heat capacity
C1, C2, C3 arbitrary constants
ijk1 elastic constitutive tensor
E total energy density
internal energy density function
arbitrary function
H Heaviside step function
HO, Wl Hilbert spaces
J . determinant of Jacobian matrix for
the transformation from inertial to
A reference frame coordinate system
thermal conductivity (scalar and
tensor)
Boolean connectivity matrix
outward normal unit vector to @
shape function
heat flux vector
heat generated per unit mass
time
absolute temperature
absolute temperature at zero strain
displacement
arbitrary function
reference frame displacement
relative displacement
sgacia] coordinate
thermal expansion coefficient
boundary of open set
frequenC{
incremen
linear strain tensor components
test function
wave number
Lame elastic constants
natural coordinates
density
Cauchy stress tensor
relaxation time
shape function
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v natural coordinate
Q open set

v gradient
Subscripts:

n grid location

~ vector

p second-order tensor
Superscripts:

. time derivative

e element quantity

J _ time step
Einstein summation convention implied.
INTRODUCTION

The use of heat and stress to alter materials and
material surfaces has been known for over 5000 years.
Although many of the compositions, heat treating, and
joining techniques have been lost, it is evident that
the objective was to combine the proper material com-
position at a temperature and stress with heating and
cooling rates to produce a more durable material. This
is still the objective today; however, we are rapidly
approaching some limitations in heat transfer rates
and induced stresses. These processes are very
important to our understanding of subsequent wear in
gas path seals for turbine engines, as well as many
other rapidly cooled surfaces.

Conventional Cooling

High heat transfer rates are experienced in boil-
ing from a cylinder which passes through the stable
regimes of film, transition, nucleation, and incipi-
ence boiling prior to passing to the conduction and
convection regimes. Nukiyama (ref.l) appears to have
first recorded this phenomenon, but it was undoubteily
well known to the heat-treating practitioners as a
method of controlling material strength (eg. use of
ice, salts, and oiIS?. Thezpeak ngcleate f]ué for
water is about 15.8x105 W/mZ (5x10° Btu/hr-ft<) at
DNB (departure from nucleate boiling) under steady-
state conditions. However, the rate of cooling (heat-
ing) associated with the Leidenfrost (incipience)
temperature (which varies with bath subcooling, the
material etc.) ranges fsom the metastable condition
(ref. 2) to over 4.5x10° K/s, as measured for bubble

rowth in saturated water (ref. 3). Giarrantano
?ref. 4) investigated transient boiling in fluid
helium for hegting rates from steady state to the
order of 1x10% K/s. The peak nucleate fluxes in-
creased an order of magnitude over the steady-state
values.

If one increases the body force component (favor-
ably) through flow augmentation devices (ref. 5) or
by rotation (refs. 6,7) the heat flux ca9 be jncreased
by a ;actor of pﬁrhaps 20 (i.e., to 3x10/ W/m
(1x107 Btu/hr-ft¢) under steady-state conditions).

The heat fluxes at the throat_of a_high-pregsure
rockgt engine a§§ 0.9x10° to 3x108 N/m2 (0.3x10° to

1x10° Btu/hr-ft¢) and represent some of the highest



operational steady fluxes. As to the temperature rise
time of th: materials during the starting and shutdown
transients, which last for several mi]]iseconog, the
terperature chagges are usually less than 1x10% K/s
(ncminally 3x10° K/s).
Rapid Quench
In rapid quenching techniques and formation of

metallic glasses, Davies (ref. 8) cites cooling rates
which are very large. In the quenching literature the
surface temperatures are used as boundary conditions
(Dirichlet formulations) rather than the heat flux
(Neumann formulations). Ice water, salt water, and
0i1 quenching are commonly used in heat treating and
forming of bulk materials. The rates are variable and
depend on the mass, gith fluxes and cooling rates both
of the order of 1x10° K/s. The rates for producing
metallic glasses all appear to be larger than 100 K/s
to eXfect vitrification, with rates greater than

1x10™ K/s generally considered practical.*

Calculated va1uis for the glass transition in metals
lie between 3x10% and 1x10° K/s (ref. 8). These
rates are usually associated with at least one
boundary in continuous motion, such as in turbine
engine blade/seal rubbing. Laser glazing and splat
cooling associated with plasma spraying are considered
to produce ;he highest

rates, 1x107 K/s and 1x108 to 1x1010 k/s, respec-
tively (ref. 8).

For §b]a5 quenching of 40Fe-40Ni-14P-6B, with

h = 2.5 MW/mc-K and Tme]t - Tg]ass = 600 K

(ref. 8), the average heat flux would be 1.5 GW/m2
(5x108 Btu/hr-ft¢). Thus although the cooling rates
are very high, the heat flux requirements appear to be
similar to those known to rocket designers.

Mechanical Rubs

In seal rubs, grinding, and wear phenomena, the
problem is further complicated by the simultaneous
application of a high normal load along with the
moving boundary condition. Such problems may be
classified as the Blok type (ref. 9): Blok studied
the motion of a finite-width block sliding over a
semi-infinite half space. Extension include dry rub
geometries (turbine blades, seals, bearings, and
brushes (refs. 10-12), and third-body effects (e.qg.,
lubricant due to melt or conventional lubricants) are
discussed by Godet et al. (ref. 13) and Braun et al.
(ref. 14).

The duration of the event is very short and more
explosive in nature than either conventional cooling
or rapid quenching; furthermore ablative losses can
and do occur. Marscher (ref. 11) estimates the heat
flux per unit of_true cogtact area (incguding gsperi—
ties) to pe 4x103 Btu/in’-s or 6.5 GW/m? (2x10
Btu/hr-ft¢). Such high fluxes for even very short
times are usually destructive because the stresses in
the materials exceed the failure stress and surface
cracking ensues.

Objectives

Although transient thermostress computations have
been carried out for rocket engine channels and mech-
anical rubs, the analyses are based on steady- and
pseudo-steady-state postulates. In this paper, we
develop an explicit transient formulation of the
coupled thermal and mechanical equations, including
wave effects, which can be used to predict stresses
and thermal profiles under conditions of very rapid
cooling or heating as associated with seal rubs, the
tormation of metallic glasses, other equivalent heat
treat processes and rocket engine channels. For this
information, boundary constraints of either the

. Lagrangian or Eulerian type can be handled.

*Exceptions occur e.g., meﬁa]]ic g]ass spherules of
55-Au -22.5Pb-22.55b form at 10¢ to 10° K/s, ref. 32.

MODELING AND MOTIVATION

Consider, for example, problems with transient
energy input and pressure loading of a fluid with
deformable boundaries. The equations of motion for
fluid dynamics (usually Eulerian in form) possess
boundary conditions which are Lagrangian in form
(usually associated with solid mechanics). The stan-
dard methodology is to decouple the equations and
introduce steady- or quasi-steady-state techniques.
In this section we develop the equations and criteria
for predicting.the coupled thermomechanical behavior
under very rapid and more conventional transients.

The governing equation for the combined thermo-
mechanical system is based on four conservation laws:
conservation of mass, linear momentum, angular momen-
tum, and energy. The form of the partial differential
equations that represent these conservation laws‘de-
pends on the coordinate system and the kinematic
description used. In this derivation the governing
equations are constructed by using an arbitrary moving
reference system as defined by its displacement Ugs
see figure 1. ~

=y *w
g

When U, is zero, the description is the usual
Eulerian formulation (stationary observer); when

%% is the same as the material displacement y, the
scription reduces to the Lagrangian formulation

(moving observer).
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FIGURE 1. REFERENCE FRAME

To complete the formulation, three sets of equa-
tions are required in addition to the conservation
principles: a constitutive set, an equation or set of
equations of state, and a heat diffusion law or laws.
However, to specify these equations requires a
specific material and, since we wish to maintain gen-
erality, these equations will remain arbitrary.

The .use of this general description will allow the
convenient numerical solution of problems involving
large displacements in part of the mesh such as in
sliding contacts (ref 15) and production of high-
strength, corrosion-resistant ritbon materials (ref.
16). Ribbons for transformer windings or pulverized
for powder metallurgy and general ribbon materials of

.practical interest such as Fe, Ni, Co, Au, A1 com-

plexes are alloys which have predicted critical ﬁool—
ing rates for vitrification of the order of 3x10% to
1x10° K/s. The equations can be useful in problems
involving large material flows such as in the analysis
of continuous casting of steel (ref. 17). The formu-
Tation will also be useful in problems involving the



development of high-speed rubber products such as
tires and crawler tracks where the speeds are iower
tut the applied loads are high.

GOVERNING EQUATIONS

Conservation of Mass

~ In this formulation the mass of any body is as-
sumed to be fixed. The change of mass due to chemical
reactions is ignored. The change of mass in anry open
region g is then given by the mass flux into the

region. Expressing this statement in integral form

yields

e odn—fpﬂ-ndr=0 (1)
a(t) N

where p 1is the mass density, r is the boundary of
the open region, and w is the velocity vector with
Cartesian components wJ of the mass with respect
to the region q.

The inertial velocity of the material ﬁ can be
decomposed into two components: the ve]oc1ty of the
material with respect to the reference frame, and the
velocity of the reference frame w with respect to
the inertial frame U (fig. 1). “The vector iden-
tity relating these tgree velocities is

.

* (2)

l'Jz
= g

In most previous work using an Arb¥trary
Lagrangian-Eulerian description, Hirt, Noh, Donea, and
Eelystchko (refs. 18-21) used the grid velocity as the
independent variable descr1b1ng the reference frame.
When the grid velecity is used, the Eulerian descrip-
tion can be obtained by setting the arid velocity to
zero. The Lagrangian description, on the other hand,
can only be obtained by setting the grid velocity to
the material velocity, which is unknown apriori. The
preference of grid velocity over relative velocity is
due to the application of the previous researcher's
formulations to fluid problems where the Eulerian
description is preferred.

In the heat treatment problems the bulk material
velocities are either known, as in the sliding-contact
problem, or can be reasonably estimated, as in the
continuous-casting process. The motion of the bound-
ary of the material is not known apriori; therefore
the description that most easily reduces to the
Lagrangian description is used. Since equation (1)
is true for an arbitrary boundary, by applying the
divergence thecrem and the Leibniz rule, the conserva-
tion law can be written in differential form as

3

s (pd) + 3« (pW)d =0 (3)

where J is the determinate of the Jacobian matrix.
By using the icdentity due to Euler

b*tog+0*+tg +w=0 (5)

Conservation of Linear Momentum

The conservation of linear momentum in an arbi-
trary moving open region o with boundary r can be
written in integral form as

u do - ~/ﬁ d
‘/ﬂ-( oL a(t) ok da

+f(ogﬂ-n,-sz-n)dr=0 (6)
r =
The first term is the change of momentum within the
volume g, the second term is the contribution from
the body force vector b, the third term is the momen-
tum flux out of the reg1on, and the fourth term is the
momentum on the body from the boundary traction. By
converting equation (6) to a differential form in a
similar manner as used in the mass conservation equa-
tion, the following differential equation results:

@l
(ad

i -ob-gg*o(ieg)li=0 (7)

Conservation of Angular Momentum

It can be easily shown that the conservation of
angular momentum is satisfied only if the stress ten-
sor o is symmetric (which is the usual case).

~

Conservation of Energy

The conservation of energy for a thermomechanical
system with an arbitrary moving reference frame can be
expressed in integral form as

f(sz'ﬂ)~ndr+f()ob-ndn- foEE{'ndr

r a(t r
—[q-ndr*/ rpdn=a—t- oE da
r~ a(t) a(t)

(8)
By splitting the energy density E into internal
energy density & and kinetic parts and by using a
similar procedure as in the derivation of the other
conservation laws, a differential form of the conser-
vation of energy can be written as

gt e-p38 " Y-3°qtor=o8 (9)

To complete the governing equations, a constitu-
tive equation, an equation of state, and a heat
diffusion law must be specified. For example,
restrictions of the form of these equations can be
rationally shown as done in the works of Carlson,
Trusedell, Noll, Gurtin, and Eringen (refs. 22-26).
However,'comp]ete specification of these relations
requires experimental information on a particular
material.

As an example, the constitutive reiation for a
linear thermoelastic solid is

%5 = Gzt~ 23T - To) (10)
and the equation of state is given by

1
pg:EEijeij+DCT+T0aije‘ij (11)

When these relations are used with the classic Fourier
law of heat diffusion

T
45 = Ky % , (12)



and isotropy is assumed, the energy equation will
yield the linear coupled heat conduction equations as
given in Boley (ref. 27).

oCT + (31 + 2u)aTyiyy = 31—<k %—) (13)
1 1

where A and u are the Lame elastic constants.

However, in problems invoiving very rapid tempera-
ture changes and large heat fiuxes, which characterize
the heat-treating processes, the assumption of linear
behavior often leads to erroneous predictions.

To cevelop useful numerical tool to investigate
these problems, a formulation that is easily adapted
to various nonlinear constitutive and state equations
must be used. We therefore develop a finite element
approximation to the field equations without assuming
a form of the constitutive relations or a form of the
equation of state. A general form of the heat diffu-
sion equation is assumed as described in the following
section.

Heat Diffusion Equation
The most valid first-order relation which exists

between the heat flux vector and the temperature
gradient is

R Al

ij axj
When this equation is used in a purely therma! problem
with a fixed reference system, the energy equation be-
comes the parabolic heat conduction equation

N I

i ax; (14)

oCT = ko’T : (15)
This equation, although adequate for slow processes,
predicts an infinite propagation velocity for a finite
heat flux. One method to resolve this error is the
modification to equation (14) proposed by Maxwell and
Grad (refs. 28, 29)

L 3T A T 39;

G, = K — = iij—TW (16)

i ax,
We use a modified form which is more convenient to
incorporate into the finite element formulation:

q = - k_aj_*f(..i)— T(kET—+Q..3—T—) (17)
i < X ij axj ax; ij axj

This diffusion law in a purely thermal problem will
yield an energy equation that is of the form of the
telegraph equation which was studied by Weymann,
Baumeister, and Hamill (refs. 30, 31).

Further heuristic generaiization involving powers
of the thermal gradients and multipie relaxation times
can be made but are not considered in the proposed
finite element formulation.

FINITE ELEMENT FORMULATION

Approximate solutions to the field equation will
be developed by applying the finite element technique
in space and a simple explicit integration method in
time. The use of the explicit temporal integration
method permits the transient solution to proceed with-
out the need to solve simultaneous systems of non-
linear equations. The behavior of current techniques
for soiving systems of nonlinear equations depends on
the properties of the equations to be solved. Since

the equations for the state and constitutive relations -

are assumed to be arbitrary, the explicit method pro-
vides an effective formulation.

The Timitation for explicit methods is that the
time increment used must be small enough to keep the
integration stable. In rapid heat-treating problems
this restriction is not excessive. The stability of
our finite element formulation is investigated in the
section Analysis of the Discrete Equations.

By multiplying the differential forms of the con-
servation equations by a test function n and inte-
grating over the domain of the problem, the following
weak forms for the conservation principles results:

Conservation of Mass

Find DEHO, Ui, wi e W VoneH such that

3l W,
. —J_,Jd)_a .
_/n‘"[(" Teogx, T ax.) X wj]d“

J
*/pv'vj nn; dr =0 (18)

Conservation of Linear Momentum

Find uj, Wi ¢ H1, o, ojj ¢ HO ¥ n e Hl such that

ab . an. an.
ae i 1 i J
n:p u,_b,+_w,>+ (——*‘—-—)au]dn
j‘;[1 (1 i axJ. J Z axJ. ax, J7id

+ .0, .0, =
; n,la]JnJ dr =0 (19)

Conservation of Energy

Find &, T e Hl, o, oij, eij ¢ H ¥ n eH such that

3 an 3T AT

/ nd-'é..—pn__w.-—[k_—.*k.,_
. . . ij ax;

Q { J 1 BXJ J XJ axJ J axy

*r(ka—T—+Q..a—T—)]+ no"-an&}dn=0 (20)
J i

We will now develop a finite element approximation
to the weak form of the conservation equations for
two-dimensional problems. A1l functions will be
approximated in space by assuming the form of the
functions on each element to be given by

U(x,t) = Np(x)Y;(t) (21)

where the majuscule subscripts indicate the node num-
ber and N are the shape functions defining the type
of element. For a four-node bilinear quadrilateral
element, shown in figure 2, the shape functions used
to approximate H! functions in natural coordinates are

N1=%(1-c)(1—w)
Ny =+ (1% g)(1-y)
2 4
(22)
Ny =F(1+e)(1+y)
Ny=s (1= g)(1+ )
4=73
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FIGURE 2 GENERIC ELEMENT

The shape functions used to approximate HO functions
are

ey = [1 - KDL - H(w)]

% = H(DLL - H(w)]

(23)
o3 = H(E)H(Y)

2y = [1 = H(E)H(Y)

Using the shape functions in the weak form of the mass
conservation equation results in the following semi-
discrete system of equations:

BarPg * Argeg = 0 ‘ (24)
where
e
e e
b= D K ] whp da Lp (25)
e
2
e
aN
e M .
SR / [NK 7, (g = g
a® q
N
K e
e NMWMq] % da Lp, (26)

The finite element approximation to the momentum equa-

tion is obtained from the weak form in a similar
manner.

G S1k (27)

1%k = Qe Rpguok *

Here the matrices G, Q, R, and S are defined by

e
e e 28
Z k1 /e NeNpoyay da Lpg (28)
Q

e
i Z LEI / 030 oMMy 4o (29)
e
Q

—
<
[

O
—
[

ol s et

e
e e
Rpg = Z Lt /e =2305N Moo Ny, d2 Lgy (30)

Q

€ aN
S, = Z:Le 1( Ik + [k>o.. da (31)
Jk ;J [z.e? ax; axX ij

The finite element approximation to the energy equa-
tion is

GIJSJ =D, (32)
where
e
aN
_ e S
0y = Z L1y / [NJ"K"K (" = Vs 3% %k )
rze J
aN aN
Jfs S

A1l first-order time derivatives will be approximated
by a forward difference operator

P L
e (34)

and all second-order time derivatives will be approxi-
mated by a central difference operator.

-1 (35)

When the temporal difference operators are applied
simultaneously, the temporal integration scheme is
always unstable. To mitigate the instability of the
discrete system, a staggered approach to the temporal
integration is used. The properties of the discrete
equations are analyzed in the next section.

ANALYSIS OF THE DISCRETE EQUATIONS

The stability of the preceding discrete equations
is investigated by examining several model equations.

The first model equation is the Lagrangian formu-
lation for one-dimensional elastic solids. The dif-
ference equations for this system are

ax( j*l1 _ J*1 _ j+l J
KT'(°n-l Pno1 * bep Gop * Phel ~ P
| J .J J J
+("n * un-l) -1 ¥ 3 (un+1 - &n-l) °n
*<"‘ﬂ+1 - "ﬂ)”ﬂﬂ =0 (36)
Ax J J Jj+l J
at [2(°n-1 * °n)(an—1 - tln-l)
J J J g+l _ .d
+ (°n-1 + 14pn + °n+1) (an On)

w2 (s e ) (8 - )] = 12 (o - o)

(37)



. ("f\-l + 14 00+ pi+1>(Tg;+1 - Tg) |

(e ()

* %(Tﬂq v s Tﬂ-l)(”‘g -ty - t‘g-l)

+ k(ZT}J; -1 - Tiﬂ) =0 (38)

To study the stability of this system, it will be

linearized by considering linear perturbations of o,
u, and T.

TR e (39)
a0 L+ 0 ' (40)
T 7 et (41)

where the last term in each expression is assumed to
be small. The linearized difference equations are then

axf g+l j+l Js 1 _ 3
at (“n-l = Ppp 0o T = e *oepyg - °n+l)

+ 400( I'Jg.._l - ﬁ;]‘_l) = 0 ' (42)
ax Jtl _ . J*l _ J*l _ .
at "o[on-l 01" 4(°n on)+ Ohe1 = Ope1

- 3C2<D}]‘+l - 03'_1)= 0 (43)
AX j*1 _ 1 J*l1 _ 43 J*l _ 4
it %o [Tﬂ-l “Th1* 4 (Tn - Tn)+ T+l = Thel

s . . A : j
sk (2Tﬂ, M Tf,ﬂ) T (2“% -l - “n-l)
xa o (5 iogd ). )
M ol R (Tn*l vt Tn_l) 0 (44)

Exact solutions to the linear difference equations in
the form

pﬂ = C; exp (iatyj + cnax) (45)
ﬁﬂ = C, exp (iatyj *+ enax) (46)
Tg = C3 exp (iatyj + «nax) (47)

can be found; for the difference equations to be
stable, the modulus of

L A I s (48)
must be less than 1. Since this is not the case when
the central-forward difference method is applied, a

modified integration approach that is still explicit
in form must be used.

One such approach is to advance one variable at a
time. For example, advance the density by the standard
forward difference operator; then, in the momentum
equation, use the new values for the density to cal-
culate the right side and solve for the linear dis-
placement. The internal energy (temperature) can be
advanced by using the new values for both the density
and the displacements to compute the right-side vector.

The linearized difference equation for this tem-
poral integration method when applied to the linear
problem can be shown to be stable when

at <(%>~/§ (49)
At < —?(%E)(Ax)z_ (50)

The second model problem is that of linear thermo-
elasticity with a motion of the reference frame. By
a similar analysis the conditions for a stable solu-
tion are

at <(-§i 2 (51)

at < #{(—C)(Ax)z , (52)

at < 20x (53)°
1w

The last restriction can be eliminated by intro-
ducing upwinding. One way to accomplish this is to
postmultiply all transport terms in the discrete equa-
tions by an amplification matrix (ref. 22).

SUMMARY

1. A formulation for transient heating which is
independent of constitutive laws and the equation of
state has been developed. The user selects a
material, the appropriate constitutive law, and the
equation of state; the numerical solution will then
provide the thermomechanical effects for that material.

2. The formulation applies to systems which re-
spond to very rapid thermomechanical loadings such as
occur in gas path seal rubs and in forming vitrified
prodﬂcts where the quenching rates are greater than
1x10™ K/s. It can also be applied to more
conventional thermomechanical loadings but may not
represent the most efficient technique.

3. This formulation includes transport effects
such as can occur in sliding contacts (e.g., bearings,
seals, continuous casting, ribbon production, rubber
products, and some types of heat treating). The cou-
pled conservation laws predict two transport terms.
The conventional heat transport w: dT/dx and a
strain energy transport term which is not included in
the conventional governing equations for heat transfer
(ref. 9). Studies need to be carried out to verify
the magnitude of these terms.

4, The stability analysis, although based on a
linearized model, is effective because the estimate
provides the maximum disturbance. Experience has
shown systems with smaller perturbations to be
stable. The time-step restrictions calculated from
linear stabililty analysis can be used to estimate

~acceptable time steps in nanlinear problems.

Experience indicates that from the maximum value
of each coefficient (e.g., sound speed and thermal



diffusivity, etc.) the linear theory predicts reason-
able values for the time increments in the nonlinear
problem. These estimates can be used to judge the
applicability of this formulation to a particular
problem.
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