34 research outputs found

    Tumeurs primitives de l’orbite traitement chirurgical

    Get PDF
    Les tumeurs primitives de l’orbite sont des affections rares, leurs  manifestation cliniques sont tardives et variées pouvant êtres trompeuses. L’imagerie TDM et surtout IRM est capitale pour le diagnostic et la prise en charge. Le traitement est souvent chirurgical, le choix de la technique dépend de la taille et la topographie tumorale. Nous rapportons 13 cas de tumeurs orbitaires colligés entre 2004 et 2010. L’âge moyen de nos patients est de 36 ans, l’exophtalmie a été le maitre symptôme. Tous nos patients ont été opérés. Après étude histologique de la pièce d’exérèse opératoire il s’agissait de: 5 hémangiomes caverneux, 4 tumeurs mixtes, 2 neurinomes, 1 kyste hydatique et 1 angiome. Un seul cas de récidive tumorale a été noté.Mots clés : tumeur de l’orbite, hémangiome caverneux, shwannome, chirurgie

    Inhibition of Wnt/β-Catenin Signaling by a Soluble Collagen-Derived Frizzled Domain Interacting with Wnt3a and the Receptors Frizzled 1 and 8

    Get PDF
    The Wnt/β-catenin pathway controls cell proliferation, death and differentiation. Several families of extracellular proteins can antagonize Wnt/β-catenin signaling, including the decoy receptors known as secreted frizzled related proteins (SFRPs), which have a cysteine-rich domain (CRD) structurally similar to the extracellular Wnt-binding domain of the frizzled receptors. SFRPs inhibit Wnt signaling by sequestering Wnts through the CRD or by forming inactive complexes with the frizzled receptors. Other endogenous molecules carrying frizzled CRDs inhibit Wnt signaling, such as V3Nter, which is proteolytically derived from the cell surface component collagen XVIII and contains a biologically active frizzled domain (FZC18) inhibiting in vivo cell proliferation and tumor growth in mice. We recently showed that FZC18 expressing cells deliver short-range signals to neighboring cells, decreasing their proliferation in vitro and in vivo through the Wnt/β-catenin signaling pathway. Here, using low concentrations of soluble FZC18 and Wnt3a, we show that they physically interact in a cell-free system. In addition, soluble FZC18 binds the frizzled 1 and 8 receptors' CRDs, reducing cell sensitivity to Wnt3a. Conversely, inhibition of Wnt/β-catenin signaling was partially rescued by the expression of full-length frizzled 1 and 8 receptors, but enhanced by the expression of a chimeric cell-membrane-tethered frizzled 8 CRD. Moreover, soluble, partially purified recombinant FZC18_CRD inhibited Wnt3a-induced β-catenin activation. Taken together, the data indicate that collagen XVIII-derived frizzled CRD shifts Wnt sensitivity of normal cells to a lower pitch and controls their growth

    A Cryptic Frizzled Module in Cell Surface Collagen 18 Inhibits Wnt/β−Catenin Signaling

    Get PDF
    Collagens contain cryptic polypeptide modules that regulate major cell functions, such as cell proliferation or death. Collagen XVIII (C18) exists as three amino terminal end variants with specific amino terminal polypeptide modules. We investigated the function of the variant 3 of C18 (V3C18) containing a frizzled module (FZC18), which carries structural identity with the extracellular cysteine-rich domain of the frizzled receptors. We show that V3C18 is a cell surface heparan sulfate proteoglycan, its topology being mediated by the FZC18 module. V3C18 mRNA was expressed at low levels in 21 normal adult human tissues. Its expression was up-regulated in fibrogenesis and in small well-differentiated liver tumors, but decreased in advanced human liver cancers. Low FZC18 immunostaining in liver cancer nodules correlated with markers of high Wnt/β−catenin activity. V3C18 (Mr = 170 kD) was proteolytically processed into a cell surface FZC18-containing 50 kD glycoprotein precursor that bound Wnt3a in vitro through FZC18 and suppressed Wnt3a-induced stabilization of β−catenin. Ectopic expression of either FZC18 (35 kD) or its 50 kD precursor inhibited Wnt/β−catenin signaling in colorectal and liver cancer cell lines, thus downregulating major cell cycle checkpoint gatekeepers cyclin D1 and c-myc and reducing tumor cell growth. By contrast, full-length V3C18 was unable to inhibit Wnt signaling. In summary, we identified a cell-surface signaling pathway whereby FZC18 inhibits Wnt/β−catenin signaling. The signal, encrypted within cell-surface C18, is released by enzymatic processing as an active frizzled cysteine-rich domain (CRD) that reduces cancer cell growth. Thus, extracellular matrix controls Wnt signaling through a collagen-embedded CRD behaving as a cell-surface sensor of proteolysis, conveying feedback cues to control cancer cell fate

    The effect of low temperature and low light intensity on nutrient removal from municipal wastewater by purple phototrophic bacteria (PPB)

    Get PDF
    There has been increased interest in alternative wastewater treatment systems to improve nutrient recovery while achieving acceptable TCOD, TN, and TP discharge limits. Purple phototrophic bacteria (PPB) have a high potential for simultaneous nutrient removal and recovery from wastewater. This study evaluated the PPB performance and its growth at different operating conditions with a focus on HRT and light optimization using a continuous-flow membrane photobioreactor (PHB). Furthermore, the effect of low temperature on PPB performance was assessed to evaluate the PPB’s application in cold-climate regions. In order to evaluate PPB performance, TCOD, TN, and TP removal efficiencies and Monod kinetic parameters were analyzed at different HRTs (36, 18, and 9 h), at temperatures of 22°C and 11°C and infrared (IR) light intensities of 50, 3, and 1.4 Wm-2. The results indicated that low temperature had no detrimental impact on PPB’s performance. The photobioreactor (PHB) with cold-enriched PPB has a high potential to treat municipal wastewater with effluent concentrations below target limits (TCOD˂ 50mgL-1, TN˂10 mgL-1, and TP˂1 mgL-1). Monod kinetic parameters Ks, K, Y, and Kd were estimated at 20-29 mgCODL-1, 1.6-1.9 mgCOD(mgVSS.d)-1, 0.47 mgVSS mgCOD-1, and 0.07-0.08 d-1 at temperatures of 11°C-22°C respectively. The results of the steady-state mass balances showed TCOD, TN, and TP recoveries of 80%-86%, which reflected PPB’s substrate and nutrient assimilation. Previous studies utilized high light intensities (˃ 50 Wm-2) to provide PPB with the maximum energy required for its growth. In order to enable the PPB technology as a practical approach in municipal wastewater treatment, light intensity must be optimized. Based on the literature, there is no study on PPB performance at low light intensities using a continuous-flow membrane photobioreactor. The effect of low light intensities of 3, and 1.4 Wm-2 on PPB performance was addressed in this study. The results indicated that PPB at a light intensity as low as 1.4 Wm-2 were able to treat municipal wastewater with effluent concentrations below above-mentioned target limits. Light intensity (1-50 Wm-2) had no detrimental impact on PPB performance and Monod kinetic parameters. This study showed that the optimized light intensity required for municipal wastewater treatment with PPB is significantly lower than previously indicated in the literature. The energy consumptions attributed to PHB’s illumination of 3, and 1.4 Wm-2 were determined to be 1.44, and 0.67 kWh/m3 which is significantly lower than previous studies (˃ 24 kWh/m3)

    SHS reactions in the NiO-Al system: Influence of stoichiometry

    No full text
    International audienceThermite reactions in the NiO-Al system have been studied. In addition to the case when the stoichiometry is set up to produce metallic nickel and alumina, we studied the case when Al is added in excess in order to react with the Ni produced through the reduction of nickel monoxide with Al to produce various nickel aluminides. As thermite reactions are highly exothermic, in order to provide a better understanding of the reactions, alumina has been added to the green mixture to reduce the reaction rate and overall exothermicity, in amounts corresponding up to 50% of the overall heat capacity of the sample

    Gingiva laser welding: preliminary study on an ex vivo porcine model

    No full text
    Objective: The use of lasers to fuse different tissues has been studied for 50 years. As none of these experiments concerned the oral soft tissues, our objective was to assess the feasibility of laser gingiva welding. Materials and Methods: Porcine full-thickness gingival flaps served to prepare calibrated samples in the middle of which a 2 cm long incision was closed, either by conventional suture or by laser tissue welding (LTW). To determine the irradiation conditions yielding the best tensile strength, 13 output power values, from 0.5 to 5 W, delivered either at 10 Hz or in continuous wave mode, were tested on six indocyanine green (ICG) concentrations, from 8% to 13% (588 samples). Then, some samples served to compare the tensile strength between the laser welded and the sutured gingiva; the other samples were histologically processed in order to evaluate the thermal damage extent. The temperature rise during the LTW was measured by thermocouples. Another group of 12 samples was used to measure the temperature elevation by thermal camera. Results: In the laser welding groups, the best tensile strength (p<0.05) was yielded by the 9% ICG saline solution (117 mM) at 4.5 W, 10 Hz, and a fluence of 31.3 kJ/cm2. The apposition strength revealed no statistically significant difference (p<0.05) between the sutured and the laser welded gingiva at 4.5 W, 10 Hz, and 9% ICG solution. The mean temperature was 74±5.4°C at the upper surface and 42±8.9°C at the lower surface. The damaged zone averaged 333 μm at the upper surface. Conclusions: The 808 nm diode laser associated with ICG can achieve oral mucosa LTW, which is conceivable as a promising technique of gingival repair. © Mary Ann Liebert, Inc
    corecore