101 research outputs found

    Seawater cycled throughout Earth's mantle in partially serpentinized lithosphere

    Get PDF
    The extent to which water and halogens have primordial origins in the Earth's mantle, or are dominated by seawater-derived components introduced by subduction, remains a matter of debate. About 90% of non-radiogenic xenon in the Earth's mantle has a subducted atmospheric origin, but the degree to which atmospheric gases and other seawater components are coupled during subduction is unclear. Here we present the concentrations of water and halogens in samples of magmatic glasses collected from global mid-ocean ridges and ocean islands. We show that water and halogen enrichment is unexpectedly associated with trace element signatures characteristic of dehydrated oceanic crust, and that the most incompatible halogens have relatively uniform abundance ratios that are different from primitive mantle values. Taken together, these results imply that Earth's mantle is highly processed and that most of its water and halogens were introduced by the subduction of serpentinised lithospheric mantle associated with dehydrated oceanic crust.Australian Research Council (FT130100141

    Separate processing of texture and form in the ventral stream : evidence from fMRI and visual agnosia.

    Get PDF
    Real-life visual object recognition requires the processing of more than just geometric (shape, size, and orientation) properties. Surface properties such as color and texture are equally important, particularly for providing information about the material properties of objects. Recent neuroimaging research suggests that geometric and surface properties are dealt with separately, within the lateral occipital cortex (LOC) and the collateral sulcus (CoS), respectively. Here we compared objects that either differed in aspect ratio or in surface texture only, keeping all other visual properties constant. Results on brain-intact participants confirmed that surface texture activates an area in the posterior CoS, quite distinct from the area activated by shape within LOC. We also tested two patients with visual object agnosia, one of whom (DF) performed well on the texture task but at chance on the shape task, while the other (MS) showed the converse pattern. This behavioral double dissociation was matched by a parallel neuroimaging dissociation, with activation in CoS but not LOC in patient DF, and activation in LOC but not CoS in patient MS. These data provide presumptive evidence that the areas respectively activated by shape and texture play a causally necessary role in the perceptual discrimination of these features

    Attention modulates adaptive motor learning in the ‘broken escalator’ paradigm

    Get PDF
    The physical stumble caused by stepping onto a stationary (broken) escalator represents a locomotor aftereffect (LAE) that attests to a process of adaptive motor learning. Whether such learning is primarily explicit (requiring attention resources) or implicit (independent of attention) is unknown. To address this question, we diverted attention in the adaptation (MOVING) and aftereffect (AFTER) phases of the LAE by loading these phases with a secondary cognitive task (sequential naming of a vegetable, fruit and a colour). Thirty-six healthy adults were randomly assigned to 3 equally sized groups. They performed 5 trials stepping onto a stationary sled (BEFORE), 5 with the sled moving (MOVING) and 5 with the sled stationary again (AFTER). A 'Dual-Task-MOVING (DTM)' group performed the dual-task in the MOVING phase and the 'Dual-Task-AFTEREFFECT (DTAE)' group in the AFTER phase. The 'control' group performed no dual task. We recorded trunk displacement, gait velocity and gastrocnemius muscle EMG of the left (leading) leg. The DTM, but not the DTAE group, had larger trunk displacement during the MOVING phase, and a smaller trunk displacement aftereffect compared with controls. Gait velocity was unaffected by the secondary cognitive task in either group. Thus, adaptive locomotor learning involves explicit learning, whereas the expression of the aftereffect is automatic (implicit). During rehabilitation, patients should be actively encouraged to maintain maximal attention when learning new or challenging locomotor tasks

    Longitudinal Assessment of Resident Performance Using Entrustable Professional Activities

    Get PDF
    IMPORTANCE Entrustable professional activities (EPAs) are an emerging workplace-based, patient-oriented assessment approach with limited empirical evidence. OBJECTIVE To measure the development of pediatric trainees’ clinical skills over time using EPA-based assessment data. DESIGN, SETTING, AND PARTICIPANTS Prospective cohort study of categorical pediatric residents over 3 academic years (2015-2016, 2016-2017, and 2017-2018) assessed on 17 American Board of Pediatrics EPAs. Residents in training at 23 pediatric residency programs in the Association of Pediatric Program Directors Longitudinal Educational Assessment Research Network were included. Assessment was conducted by clinical competency committee members, who made summative assessment decisions regarding levels of supervision required for each resident and each EPA. Data were collected from May 2016 to November 2018 and analyzed from November to December 2018. INTERVENTIONS Longitudinal, prospective assessment using EPAs. MAIN OUTCOMES AND MEASURES Trajectories of supervision levels by EPA during residency training and how often graduating residents were deemed ready for unsupervised practice in each EPA. RESULTS Across the 5 data collection cycles, 1987 residents from all 3 postgraduate years in 23 residency programs were assigned 25 503 supervision level reports for the 17 general pediatrics EPAs. The 4 EPAs that required the most supervision across training were EPA 14 (quality improvement) on the 5-level scale (estimated mean level at graduation, 3.7; 95% CI, 3.6-3.7) and EPAs 8 (transition to adult care; mean, 7.0; 95% CI, 7.0-7.1), 9 (behavioral and mental health; mean, 6.6; 95% CI, 6.5-6.6), and 10 (resuscitate and stabilize; mean, 6.9; 95% CI, 6.8-7.0) on the expanded 5-level scale. At the time of graduation (36 months), the percentage of trainees who were rated at a supervision level corresponding to “unsupervised practice” varied by EPA from 53% to 98%. If performance standards were set to align with 90% of trainees achieving the level of unsupervised practice, this standard would be met for only 8 of the 17 EPAs (although 89% met this standard for EPA 17, performing the common procedures of the general pediatrician). CONCLUSIONS AND RELEVANCE This study presents initial evidence for empirically derived practice readiness and sets the stage for identifying curricular gaps that contribute to discrepancy between observed practice readiness and standards needed to produce physicians able to meet the health needs of the patient populations they serve. Future work should compare these findings with post-graduation outcomes data as a means of seeking validity evidence

    Population diversity and function of hyperpolarization-activated current in olfactory bulb mitral cells

    Get PDF
    Although neurons are known to exhibit a broad array of intrinsic properties that impact critically on the computations they perform, very few studies have quantified such biophysical diversity and its functional consequences. Using in vivo and in vitro whole-cell recordings here we show that mitral cells are extremely heterogeneous in their expression of a rebound depolarization (sag) at hyperpolarized potentials that is mediated by a ZD7288-sensitive current with properties typical of hyperpolarization-activated cyclic nucleotide gated (HCN) channels. The variability in sag expression reflects a functionally diverse population of mitral cells. For example, those cells with large amplitude sag exhibit more membrane noise, a lower rheobase and fire action potentials more regularly than cells where sag is absent. Thus, cell-to-cell variability in sag potential amplitude reflects diversity in the integrative properties of mitral cells that ensures a broad dynamic range for odor representation across these principal neurons

    AKT Signaling Mediates IGF-I Survival Actions on Otic Neural Progenitors

    Get PDF
    Background: Otic neurons and sensory cells derive from common progenitors whose transition into mature cells requires the coordination of cell survival, proliferation and differentiation programmes. Neurotrophic support and survival of post-mitotic otic neurons have been intensively studied, but the bases underlying the regulation of programmed cell death in immature proliferative otic neuroblasts remains poorly understood. The protein kinase AKT acts as a node, playing a critical role in controlling cell survival and cell cycle progression. AKT is activated by trophic factors, including insulin-like growth factor I (IGF-I), through the generation of the lipidic second messenger phosphatidylinositol 3-phosphate by phosphatidylinositol 3-kinase (PI3K). Here we have investigated the role of IGF-dependent activation of the PI3K-AKT pathway in maintenance of otic neuroblasts. Methodology/Principal Findings: By using a combination of organotypic cultures of chicken (Gallus gallus) otic vesicles and acoustic-vestibular ganglia, Western blotting, immunohistochemistry and in situ hybridization, we show that IGF-I-activation of AKT protects neural progenitors from programmed cell death. IGF-I maintains otic neuroblasts in an undifferentiated and proliferative state, which is characterised by the upregulation of the forkhead box M1 (FoxM1) transcription factor. By contrast, our results indicate that post-mitotic p27Kip-positive neurons become IGF-I independent as they extend their neuronal processes. Neurons gradually reduce their expression of the Igf1r, while they increase that of the neurotrophin receptor, TrkC. Conclusions/Significance: Proliferative otic neuroblasts are dependent on the activation of the PI3K-AKT pathway by IGF-I for survival during the otic neuronal progenitor phase of early inner ear development

    Genetic Population Structure in the Antarctic Benthos: Insights from the Widespread Amphipod, Orchomenella franklini

    Get PDF
    Currently there is very limited understanding of genetic population structure in the Antarctic benthos. We conducted one of the first studies of microsatellite variation in an Antarctic benthic invertebrate, using the ubiquitous amphipod Orchomenella franklini (Walker, 1903). Seven microsatellite loci were used to assess genetic structure on three spatial scales: sites (100 s of metres), locations (1–10 kilometres) and regions (1000 s of kilometres) sampled in East Antarctica at Casey and Davis stations. Considerable genetic diversity was revealed, which varied between the two regions and also between polluted and unpolluted sites. Genetic differentiation among all populations was highly significant (FST = 0.086, RST = 0.139, p<0.001) consistent with the brooding mode of development in O. franklini. Hierarchical AMOVA revealed that the majority of the genetic subdivision occurred across the largest geographical scale, with Nem≈1 suggesting insufficient gene flow to prevent independent evolution of the two regions, i.e., Casey and Davis are effectively isolated. Isolation by distance was detected at smaller scales and indicates that gene flow in O. franklini occurs primarily through stepping-stone dispersal. Three of the microsatellite loci showed signs of selection, providing evidence that localised adaptation may occur within the Antarctic benthos. These results provide insights into processes of speciation in Antarctic brooders, and will help inform the design of spatial management initiatives recently endorsed for the Antarctic benthos

    Dynamic Spatial Coding within the Dorsal Frontoparietal Network during a Visual Search Task

    Get PDF
    To what extent are the left and right visual hemifields spatially coded in the dorsal frontoparietal attention network? In many experiments with neglect patients, the left hemisphere shows a contralateral hemifield preference, whereas the right hemisphere represents both hemifields. This pattern of spatial coding is often used to explain the right-hemispheric dominance of lesions causing hemispatial neglect. However, pathophysiological mechanisms of hemispatial neglect are controversial because recent experiments on healthy subjects produced conflicting results regarding the spatial coding of visual hemifields. We used an fMRI paradigm that allowed us to distinguish two attentional subprocesses during a visual search task. Either within the left or right hemifield subjects first attended to stationary locations (spatial orienting) and then shifted their attentional focus to search for a target line. Dynamic changes in spatial coding of the left and right hemifields were observed within subregions of the dorsal front-parietal network: During stationary spatial orienting, we found the well-known spatial pattern described above, with a bilateral hemifield representation in the right hemisphere and a contralateral preference in the left hemisphere. However, during search, the right hemisphere had a contralateral preference and the left hemisphere equally represented both hemifields. This finding leads to novel perspectives regarding models of visuospatial attention and hemispatial neglect

    A Novel Function of DELTA-NOTCH Signalling Mediates the Transition from Proliferation to Neurogenesis in Neural Progenitor Cells

    Get PDF
    A complete account of the whole developmental process of neurogenesis involves understanding a number of complex underlying molecular processes. Among them, those that govern the crucial transition from proliferative (self-replicating) to neurogenic neural progenitor (NP) cells remain largely unknown. Due to its sequential rostro-caudal gradients of proliferation and neurogenesis, the prospective spinal cord of the chick embryo is a good experimental system to study this issue. We report that the NOTCH ligand DELTA-1 is expressed in scattered cycling NP cells in the prospective chick spinal cord preceding the onset of neurogenesis. These Delta-1-expressing progenitors are placed in between the proliferating caudal neural plate (stem zone) and the rostral neurogenic zone (NZ) where neurons are born. Thus, these Delta-1-expressing progenitors define a proliferation to neurogenesis transition zone (PNTZ). Gain and loss of function experiments carried by electroporation demonstrate that the expression of Delta-1 in individual progenitors of the PNTZ is necessary and sufficient to induce neuronal generation. The activation of NOTCH signalling by DELTA-1 in the adjacent progenitors inhibits neurogenesis and is required to maintain proliferation. However, rather than inducing cell cycle exit and neuronal differentiation by a typical lateral inhibition mechanism as in the NZ, DELTA-1/NOTCH signalling functions in a distinct manner in the PNTZ. Thus, the inhibition of NOTCH signalling arrests proliferation but it is not sufficient to elicit neuronal differentiation. Moreover, after the expression of Delta-1 PNTZ NP continue cycling and induce the expression of Tis21, a gene that is upregulated in neurogenic progenitors, before generating neurons. Together, these experiments unravel a novel function of DELTA–NOTCH signalling that regulates the transition from proliferation to neurogenesis in NP cells. We hypothesize that this novel function is evolutionary conserved
    corecore